Flex Circuit Overview

Design overview for flexible interconnect applications
Minco is a leading supplier of precision flex circuitry for critical MIL/aerospace and medical devices. We specialize in fine lines, tight tolerances, and exacting quality requirements—the very features you need for today’s high-density, high reliability electronics. On many difficult circuit designs, Minco can produce results where others produce rejects.

Our comprehensive capabilities put the full potential of flex circuit design within your reach. We can furnish single-sided, double-sided, multilayer, and rigid-flex circuits with up to 16 layers. Stiffeners, pins, and connectors are optional. More importantly, we furnish confidence—in quality, in long-term performance, and in adherence to your specifications.

Modern facilities

All engineering and manufacturing of flex circuits take place at Minco’s Minneapolis location. Our facilities include a spacious plant dedicated to flex circuit fabrication with the stated goal of making our facilities equal to any in the world. We continually update the plant with precision equipment for drilling, plating, laminating, and trimming circuits. Our engineers and architects design all aspects of the facility, from chemical systems to material handling, to provide you clean, consistent, and cost-effective circuits.

Automation and statistical process control keep productivity high and rejects low. A computerized job scheduling system tracks your order through all phases of production. Computers also link design with production. Minco was one of the first manufacturers to accept CAD-generated artworks on disk or tape, and we now have an extensive CAD network for artwork modification, inspection, and plotting. The same system controls drilling and tooling. Because your circuit stays in digital format from your CAD to our production floor, conductor patterns and dimensions maintain their accuracy.

Minco invites you to tour our plant and see our commitment to state-of-the-art flex circuit production.

Modern facilities

Minco circuits excel in applications where quality is the primary consideration. We define quality as conformance to customer requirements; we specialize in accepting and meeting the most difficult of requirements.

Minco’s Quality Management system is certified to ISO 9001:2000 / AS9100B. Minco's flex circuits maintain conformance to IPC-6013 and other military requirements.
Solving interconnect problems with flex circuits

Infrared detector modules
Forward-looking infrared lends night vision to aircraft, tanks, and foot soldiers. High density signal lines in the sensing module terminate through a fine-line circuit with 0.005" lines and spaces.

Clinical analyzers
A diagnostic chemical analyzer must keep body fluid at a constant temperature during test operations. A Minco heater/sensor/flex circuit does the job singlehandedly. An etched-foil heater warms the sample, a wire-wound resistance thermometer senses temperature, and a flex circuit provides the link to control electronics.

Integrated circuit testers
A high speed IC handler must make repeated electrical connections to chip leads as they pass through its test site. The answer is a Minco circuit with welded fingers for contact and shielding for controlled impedance and crosstalk. The circuit can withstand millions of flexures as it opens and closes.

Military radio
The latest generation of all-purpose military radios have advanced features, compact size, and nearly indestructible construction. State-of-the-art packaging makes it all possible. An example is this Minco circuit, which has two 3-layer arms mated at a single connector.

Cardiac devices
As cardiac devices have grown more sophisticated, many manufacturers have added remote telemetry for two-way communications. Mating coils inside and outside the body exchange the signals. This Minco circuit has an integral wire-wound antenna coil in addition to the etched conductors. The package is compact, rugged, and reliable.
Capabilities

Listed below are Minco’s standard materials and specifications for flex circuits. These serve only as guidelines. Contact Minco for special materials, tighter tolerances, and any other exceptions that arise in your application.

1. Materials

Substrate:
Polyimide film 0.0005”, 0.001”, 0.002”, 0.003”, 0.005” thick.
Teflon 0.001” and 0.002”.

Cover insulation:
Same as substrate, or optional UV-cured liquid cover.

Adhesive:
Modified acrylic, epoxy, epoxy prepreg, or phenolic butyral.

Conductors:
Electrodeposited or rolled/annealed copper:
0.5 oz. (0.0007”), 1 oz. (0.0014”), 2 oz. (0.0028”), 3 oz. (0.0042”), or thicker.
Beryllium copper: 0.003” and thicker.
Cupronickel and other metals for special applications.

Stiffeners:
Epoxy-glass (FR-4), polyimide-glass, polyimide, or aluminum.

Hardboards:
Polyimide-glass or epoxy-glass.

Plating:
Copper: To desired thickness. May be applied to entire circuit or terminal areas only (selective plating) for better flexibility.
Solder: To desired thickness. Normally applied by selective coating; plating optional.
Nickel: To desired thickness.
Gold: To desired thickness.

2. Physical Properties

Maximum size:
Standard 10⅛” x 22” for more than 2 layers
Other sizes available; please inquire.

Tolerance:

Flexibility:
Single layer circuits: Minimum bend radius 6 times circuit thickness.
Double layer: Minimum bend radius 12 times circuit thickness.
Multilayer: Minimum bend radius 24 times circuit thickness.
One-time bends with sharp creases are possible. Ask Minco about factory forming.

Thickness is approximately 0.006” per circuit layer.

Temperature:
-65 to 150°C (-85 to 302°F). Will withstand a 5 second solder immersion at 260°C (500°F) without blistering, delamination, or discoloration.

Chemical resistance:
No detrimental loss of physical properties when immersed for 15 minutes in acetone, methyl alcohol, toluene, or trichloroethylene.

3. Electrical characteristics

Insulation resistance:
100 megohms minimum at 25°C (77°F), (0.010” minimum conductor spacing.)

Dielectric strength:
1000 VRMS at 60 Hz for 30 seconds, one milliamp maximum leakage current.

Wire coils:
Circuits may contain wire-wound coils for use as antennas or inductors. Typical inductance values range from 10 microhenries to 30 millihenries. Circuit cover encapsulates coils, etched conductors, and coil connections. See Bulletin FC-1 for details.

Shielding:
Specify shield layers in solid or grid patterns. Copper or screened conductive ink.

4. Connections

Interlayer:
Plated through-holes standard.

Components:
Either leaded or surface-mount components acceptable. Large component areas usually require stiffeners. Locating components in flexible areas is permissible if solder joints will not be stressed.

Pins:
Minco can assemble pins to circuits either at right angles (through holes) or in line with conductors at the circuit’s edge. Attachment method is swaging/soldering, or brazing for higher temperature rating.

Connectors:
Minco can furnish complete circuit/connector assemblies. Epoxy potting is optional.
Design options

Rigid-flex
Hybrid hardboard/flex circuits are available with high layer counts.

Pins
Minco can braze or solder pins to circuits, either through holes or as extensions to conductors.

Fine Lines
0.003” conductors and spaces are possible.

Stiffeners
An inexpensive alternative for rigidizing component areas.

Connectors
Built-in connectors speed your assembly. Optional epoxy potting seals between the circuit and connector.

Shielding
Solid or patterned shield planes reduce noise and control impedance of signal lines. Use matched impedance flex circuits for high-speed signal integrity.

Wave Solder Carrier
Stiffener material frames the circuit to hold it flat during wave solder. After soldering, just clip out and fold.

Circuit Forming
Factory formed circuits follow tight curves to save space.

Flex-Coils™
Minco has the unique ability to wind flat inductive coils and laminate them within flex circuits. Applications include pacemaker antennas and eddy current generators.

Surface Mount
Combine the space and weight savings of surface mounting with those of flex circuits for the ultimate in high-density packaging.

Selective Bonding
For better flexibility along circuit arms, individual layers are unbonded and allowed to flex freely. Each layer has its own substrate and cover.

Integrated solutions
Minco integrates temperature sensors and etched-foil heaters with flex circuits for unified temperature control.
Flex circuits represent an advanced approach to total electronics packaging. They occupy a niche between ordinary printed circuit boards and round wire, and take on many of the uses and benefits of each. In essence, flex circuits give you unlimited freedom of packaging geometry while retaining the precision density and repeatability of printed circuits.

Flex circuits have the following advantages over wire:

- Because they fit only one way, flex circuits eliminate wire routing errors. You save testing time, rework, and rejects.
- Flex circuit conductor patterns maintain uniform electrical characteristics. You can predict and control noise, crosstalk, and impedance.
- Flex circuits can save 75% on space and weight. A single flex circuit can replace several hardboards, cables, and connectors.
- Flex circuits reduce the chance of assembly rejects and in-service failures. Total installed costs are lower, especially with volume production.
- The flat foil conductors of flex circuits dissipate heat better and carry more current than round wires of the same cross-sectional area.
- Flex circuits simplify assembly and give a better appearance. There’s no need to color code and wrap bundles of wire.

Why flex circuits instead of conventional wiring?

Before: A tangle of wires connects four circuit boards in this aircraft gauge.

The flex circuit solution: A single circuit with three stiffeners provides all the necessary interconnects. Insert components into the flat circuit, solder, and fold.

After: The package is neat, lightweight, and less susceptible to connection failure.

Your answer to common design dilemmas

Have you considered all the possible uses for flex circuits?

Here are some ideas:

- Substitute flex circuits for bulky wire harnesses.
- Replace hardboard/connector/cable assemblies with rigid-flex or flex with stiffeners.
- In many cases, you can mount components directly to flexible areas. You can then bend flex circuits to fit where even the smallest hardboards can’t go.
- Use circuits as flexible shields or groundplanes to reduce noise. You can design conductor patterns to block specific types of electrical interference.
- Enhance high-speed signal integrity with matched-impedance flex circuits.
- Use flex circuits as miniature jumpers on circuit boards.
Designing your flex circuit

1. Gather the necessary literature

Request these guides before starting your design process:

TechSpec FC302 – Flex-Circuit Design Guide contains general design tips, dimensional tolerances, detailed capabilities lists, conductor design data, and artwork layout and submission guidelines.

TechSpec FC01 – Flex-Coils™ offers design assistance and specifications for flex circuits with integral inductive coils.

2. Determine circuit outlines and conductor routing

The first step in flex circuit design is to translate schematics and package geometry into flex circuit outlines and artworks. Paper cutouts are one way to achieve this.

First, cut out a piece of paper which can be folded to reach all points which the circuit will connect. Then lay the paper flat and trace conductor routing between connection points. Make additional cutouts to represent extra layers. Specify foil thickness and conductor widths to match current requirements. See TechSpec FC302 – Flex-Circuit Design Guide for a chart relating conductor cross sections, current, and temperature rise.

For assistance with artwork layout, see TechSpec FC302 – Flex-Circuit Design Guide, or let Minco prepare the artwork for you, working from your point-to-point drawings and conductor current ratings. Minco can also provide assistance in creating your original CAD part from schematic.

Hints for lower cost:

• Keep the number of layers to a minimum. In particular, do not exceed two layers unless packaging density is more important than economy. Consider using several small simple circuits instead of one large complex one.

3. Send us your request for quote

Minco’s policy is to identify and correct potential problems with circuits at the quoting stage, not after we accept your order. To evaluate your circuit and quote a firm price we need:

• A circuit drawing with outline dimensions, cutouts, and dimensional tolerances.
• A chart of hole locations, sizes, and access hole diameters with tolerances.
• A material cross section (circuit stack-up) specifying insulation thickness, adhesive, conductor thickness, and stiffener type and thickness.
• A photocopy of artwork or CAD data (if available) showing conductor layout and widths, with all applicable tolerances.
• All testing, inspection, and packaging requirements.

Contact Minco early in your design process for assistance and price estimates.
Decades of experience make Minco much more than a components supplier

Minco has been designing and manufacturing critical components since 1956. During the past five decades, we’ve grown into a global company with four product lines:

• Thermofoil™ Heaters
• Flex Circuits
• Sensors
• Instruments

We’ve developed the unsurpassed ability to design and assemble these products into a single integrated component so you can achieve the highest degree of functional and packaging efficiency. At the same time, we’ve established working relationships with the design engineering teams at hundreds of customers, freely sharing our component knowledge and experience. Our inclusive sales process creates win-win opportunities for both Minco and our customers, which shortens your sales cycle and strengthens valuable customer relationships. All of this has made Minco a trusted partner and provider of critical components for the world’s most critical applications.

Minco today: global and growing

Minco’s engineering and manufacturing plants employee over 700 people worldwide. We have the capacity and infrastructure to support a variety of applications for global customers in diverse markets. Minco’s seamless operational capabilities allow us to design and manufacture integrated components from the ground up, which shortens the supply chain and improves our response time.

Total Cost of Ownership

Minco believes in considering all costs associated with our components. That’s why we design and manufacture with total cost of ownership (TCO) in mind to ensure ease of installation, the highest level of quality and reliability, compatibility to a variety of larger control systems, and value-add opportunities for integration and assembly.

Other Minco products

Thermofoil™ heaters

• Flexible etched-foil heating elements
• Polyimide, optically clear polyester, silicone rubber, mica insulation
• Precise heat, uniform or profiled
• UL, NASA qualified models
• Complete subassemblies with heat sinks, temperature sensors, thermostats, and connectors

Sensors and instruments

• Resistance temperature detectors: Platinum, copper, nickel, and nickel-iron.
• Thermocouples: E, J, K, T.
• Probes, HVAC/R, flexible Thermal-Ribbons™, lab standards, ceramic elements.
• Controllers, transmitters, readouts, alarms.