Sensors & Instruments Product Guide RTDs | Thermocouples | Thermistors | Humidity | Assemblies | Transmitters | Monitors | Controllers # Minco: Providing Temperature Sensing Solutions for Demanding Applications For nearly 70 years, Minco has been designing and manufacturing advanced products for some of the world's most demanding applications. Our offering includes temperature sensing and control solutions, thermal heating solutions flex circuit solutions, and integrated products—coupled with broad assembly capabilities. #### Sensors #### Instruments Flexible Thermofoil™ Heaters Flex Circuits Minco's products are supported by expert engineering services to help customers plan and integrate Minco components into their products, delivering proven quality and performance in thousands of applications worldwide. ### **Superior temperature sensing solutions** Minco works diligently to provide the best temperature sensing and instrumentation solutions for your application. We have hundreds of off-the-shelf solutions to meet your immediate requirements, and have designed thousands of custom sensing pack- ages to seamlessly operate in a wide range of applications. Minco builds sensors from start to finish ensuring exceptional product quality. As a company, we strive for cost-effective solutions through efficient design and easy installation. This allows you to save time and money without sacrificing accuracy and reliability. ### Minco today: global and growing Minco's engineering and manufacturing facilities employ over 600 people worldwide. More than 300,000 ft² (27,900 m²) of manufacturing space provides the capacity and infrastructure to support a variety of applications for global customers in diverse markets. Minco's seamless operational capabilities allow us to design and manufacture integrated components from prototype to production, which simplifies the supply chain and improves our response time. Minco is AS 9100D and ISO 9001:2015 certified and we have the capabilities to meet many other quality assurance, process, and product specifications per your requirements. #### **Minco Fast Facts** Founded: 1956 Organization: Privately held Headquarters: Minneapolis, Minnesota, USA Worldwide employees: 600+ President and CEO: Dana Schurr Offering: Heaters, flex circuits, sensors and instruments, integrated products, assembly **Customers and markets:** Medical implants, medical diagnostics, aerospace, defense, semiconductor, power generation, oil and gas, rotating machinery, building automation, industrial and commercial ## **Table of Contents** ### **Section 1: Temperature Sensor Assemblies** | Tip-sensitive spring loaded | 1-2 to 1-3 | |----------------------------------|--------------| | Tip-sensitive direct immersion | 1-4 to 1-5 | | Tip-sensitive with thermowells | 1-6 to 1-7 | | High temp. with thermowells | 1-8 to 1-9 | | Hazardous area sensor assemblies | 1-10 to 1-15 | | Eurostyle | 1-16 to 1-17 | | Specifying custom assemblies | 1-18 | ### **Section 2: Probes** | Tip-sensitive RTDs and thermocouples | 2-2 to 2-3 | |---|--------------| | Fast response RTDs | 2-4 to 2-5 | | Bayonet mount tip-sensitive RTDs, thermocouples | 2-6 to 2-7 | | Electrically isolated RTDs, thermocouples | 2-8 to 2-9 | | 550°C RTDs, thermocouples | 2-10 to 2-11 | | 600°C RTDs | 2-12 | | Mineral-insulated RTDs | 2-13 | | Compact plug sensor | 2-14 | | Integrated sensor transmitter | 2-15 | | Conductivity level sensor | 2-16 to 2-17 | | How to shorten cut-to-length probes | 2-18 | | PFA, FEP encapsulation tubing | 2-18 | | | | ### **Section 3: Accessories** | Connection heads | 3-2 to 3-3 | |-------------------------------|------------| | Spring-loaded holders | 3-4 | | Fluid immersion fittings | 3-5 | | Economy thermowells | 3-6 | | HVAC thermowells | 3-6 | | Reduced tip thermowells | 3-7 | | Tapered thermowells | 3-7 | | Flanged thermowells | 3-8 | | Bayonet fittings | 3-9 | | Extensions | | | Metric accessories | | | Feedthroughs | 3-11 | | Leadwire and cable seal | | | Elastomer rubber-filled cable | | | Extension wire | 3-15 | | | | ### **Section 4: Instruments** | RTD transmitters4-2 to 4-5, 4-8 to 4 | I-9, 4-12 to 4-13 | |---|-------------------| | Thermocouple transmitters4-6 to 4-7, 4-10 to 4- | 11, 4-14 to 4-15 | | Programmable transmitters | 4-8 to 4-11 | | Field rangeable transmitters | 4-12 to 4-15 | | Programmable transmitters | | | HART® transmitters | 4-18 to 4-19 | | Temperature range table | 4-20 to 4-21 | | High accuracy calibration | | | Mounting accessories | | | Loop-powered indicators | 4-23 to 4-24 | | CT224 12-channel monitor | 4-25 to 4-26 | | CT424 Temperature Alarm/Monitor | 4-27 to 4-28 | | CT325 miniature DC temperature controller | 4-29 to 4-30 | | CT335 PC board mount temperature controller | 4-31 to 4-32 | | CT435 PC board mount temperature controller | 4-33 to 4-34 | | CT15 controller/alarm | | | CT16A temperature controller | 4-37 to 4-38 | | CT15/CT16A accessories | 4-39 | | CT425 Temperature Controller | 1-10 to 1-11 | ### **Section 5: Miniature Sensors** | Embedment RTDs | 5-2 | |----------------------------------|------------| | Embedment thermocouples | 5-3 | | Hazardous area embedment sensors | 5-4 to 5-6 | | Installation and accessories | 5-7 | | Bolt-on RTDs | 5-8 | | Economy RTDs | 5-9 | | Non-metallic case sensors | 5-10 | ### **Section 6: Stator RTDs** | Hazardous Area RTDs | 6-2 to 6- | |-------------------------------|-----------| | Single element RTDs | 6-4 to 6- | | Dual element RTDs | 6- | | Machinery protection products | 6- | ### **Section 7: HVAC Sensors** | Chill-Out™ combination sensor | 7-2 to 7-3 | |--|--------------| | Averaging temperature sensors | 7-4 | | Duct and outside air temperature sensors | 7-5 | | Room air temperature sensors | 7-6 | | Flexible Thermal-Ribbon™ pipe sensors | 7-7 | | Humidity sensor/transmitter assembly | 7-8 to 7-9 | | Hazardous area humidity assembly | 7-10 to 7-11 | | Intrinsically safe humidity assembly | 7-12 to 7-13 | | Thermal vial™ temperature sensing system | | | Refrigeration and freezer temperature system | 7-16 | | Fluid immersion temperature sensors | 7-17 | | Elements and probes | 7-18 | | Temptran 4 to 20 mA transmitters | | | | | ### **Section 8: Thermal-Ribbons**™ | Thermal Tabs™
Thermal Ribbons™ | | |-----------------------------------|-----| | Thermistor Thermal Ribbons | 8-6 | | Thermocouple Thermal Ribbons | 8-6 | | Installation and accessories | Q_7 | ### **Section 9: Elements** | Wire-wound elements | 9-2 | |---------------------|-----| | Thin film elements | 9-2 | | Installation | 9-3 | | Extension leads | 9-3 | ### **Section 10: Technical Information** | Your product guide | 10-2 | |---|----------------| | Industry applications | 10-3 | | Designed for optimal performance | 10-4 to 10-5 | | Temptran™ temperature transmitters | 10-6 | | RTD, thermocouple, or thermistor | 10-7 | | Choosing sensor elements | 10-8 | | RTD connections: 2-wire, 3-wire, 4-wire | 10-9 | | Resistance/temperature tables | 10-10 to 10-11 | | Thermocouple voltage/temperature tables | | | Temperature coefficient of resistance (TCR) | 10-12 | | SensorCalc program | 10-12 | | Miscellaneous specifications and codes | | | Material selection guide | 10-13 | | | | ### **Section 11: Reference** | Industry specifications | 11-2 | |-------------------------|------| | Global resources | 11-3 | Look for the Minco Truck to order STOCKED PARTS! ## ► SECTION 1: ASSEMBLIES - Easy-to-order temperature sensor assemblies to fit a variety of applications - RTDs, thermocouples, and transmitters - Fittings, connection heads, and thermowells included - Tip-sensitive, high temperature, explosionproof, and flameproof options ### **Section 1: Temperature Sensor Assemblies** | Tip-sensitive spring loaded | 1-2 to 1-3 | |----------------------------------|--------------| | Tip-sensitive direct immersion | 1-4 to 1-5 | | Tip-sensitive with thermowells | 1-6 to 1-7 | | High temp. with thermowells | 1-8 to 1-9 | | Hazardous area sensor assemblies | 1-10 to 1-15 | | Eurostyle | 1-16 to 1-17 | | Specifying custom assemblies | 1-18 | ## Tip/sensitive Spring/loaded RTDs #### Overview Fast and accurate readings from bearings, blocks, and other solids. Minco's spring-loaded holder ensures solid contact in drilled holes and has a built-in oil seal. The sensing probe features a copper alloy tip for quick response to temperature changes. CONDUIT THREAD - Tip-sensitive RTD probe for use to 260°C 500°F) - · Spring-loaded holder with fluid seal - · Cast iron, stainless steel, or aluminum connection head ### **Specifications** Temperature range: -50 to 260°C (-58 to 500°F). #### Material: Probe: Stainless steel with copper alloy tip. Holder: Stainless steel with Viton O-ring. Connection head: Cast iron, aluminum, or stainless steel. Pressure rating: 50 psi (3.4 bar). Insulation resistance: 100 megohms minimum at 100 VDC, leads to case. Connection: Terminal block for wires to AWG 14. **Time constant:** Typical value in moving water: Single element: 1.5 seconds. Dual element: 3.0 seconds. ### **Sensing Elements** | Element | | Code | |---|---------------------------|------| | Platinum (0.00392 TCR) | 100 Ω ±0.5% at 0°C | ▼PA | | Platinum (0.00385 TCR) 100 Ω ±0.1% at 0°C (Meets EN60751, Class B) | | ▼PD | | Platinum (0.00385 TCR) | 100 Ω ±0.5% at 0°C | PE | | Copper (0.00427 TCR) | 10 Ω ±0.2% at 25°C | CA | | (dual) | 10 Ω ±0.5% at 25°C | CC | | Nickel (0.00672 TCR) | 120 Ω ±0.5% at 0°C | NA | ### **Temperature Transmitters** Minco's Temptran™ RTD transmitters provide a 4 to 20 mA signal or HART® Protocol that can be sent over long distances with a simple 2-wire system. See Section 4 for complete temperature
transmitter specifications. **Special high-accuracy calibration:** For high system accuracy specify transmitters with matched calibration. Calibration data traceable to NIST will also be provided. Get more information on page 4-22. ### Specification and order options | | • | |---------|--| | AS5004 | Assembly number
▼AS5004: Single element RTD
▼AS5005: Dual element RTD | | PA | Sensing element from table | | 60 | Insertion depth D: Specify in 0.1" increments (Ex: 60 = 6.0 inches) ▼:15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240, 300, 360 | | Z | Leads per sensing element: Y = 2 leads ▼ Z = 3 leads (required for CA and CC elements) X = 4 leads (PD elements only) | | 1 | Conduit thread:
▼1 = ½ - 14 NPT
2 = ¾ - 14 NPT | | A | Connection head: C = Cast iron ▼A = Aluminum S = Stainless steel | | | sensor assembly, stop here. with transmitters (single platinum element only) add: | | 211 | Temptran™ transmitter model: 211 = TT211: Fixed Range (2-lead RTDs) 508 = TT508: Programmable (2 & 3-lead RTDs) 511 = TT511: HART® Programmable (2, 3, & 4-lead RTDs) | | А | Temperature range codes starting on page 4-20 or at www.minco.com | | 1 | Calibration: 1 = Nominal calibration 2 = Match calibrated, 0.75% total system accuracy. For other calibration options, contact Minco | | AS5004I | PA60Z1A211A1 = Sample part number | **▼**= STANDARD OPTIONS ## Tip/sensitive Spring/loaded Thermocouples #### Overview Fast and accurate readings from bearings, blocks, and other solids. Minco's spring-loaded holder ensures solid contact in drilled holes and has a built-in oil seal. The sensing probe features a copper alloy tip for quick response to temperature changes. - Tip-sensitive Thermocouple for use to 260°C 500°F) - · Spring-loaded holder with fluid seal - · Cast iron, stainless steel, or aluminum connection head ### **Specifications** Temperature range: -50 to 260°C (-58 to 500°F). #### Material: Probe: Stainless steel with copper alloy tip. Holder: Stainless steel with Viton O-ring. Connection head: Cast iron, aluminum, or stainless steel. Pressure rating: 50 psi (3.4 bar). Insulation resistance: 10 megohms minimum at 100 VDC, leads to case. Ungrounded junctions only. Connection: Terminal block for wires to AWG 14. Time constant: Typical value in moving water: Grounded junction: 1.5 seconds. Ungrounded junction: 7 seconds ### **Temperature Transmitters** Minco's Temptran™ thermocouple transmitters provide a 4 to 20 mA signal or HART® Protocol that can be sent over long distances with a simple 2-wire system. See Section 4 for complete temperature transmitter specifications. ### Specification and order options | AS5192 | Assembly number | |------------|--| | | ▼AS5191: Single junction | | | ▼AS5192: Dual junction | | Е | Junction type: | | | ▼E = Chromel-Constantan | | | J = Iron-Constantan | | | ▼K = Chromel-Alumel | | | T = Copper-Constantan | | U | Junction grounding: G = Grounded | | | ▼U = Ungrounded | | | 3 | | 120 | Insertion depth D: | | | Specify in 0.1" increments (Ex: 120 = 12.0 inches) 1. 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 | | | ▼ . 20, 30, 40, 30, 00, 70, 80, 90, 100, 110, 120 | | Р | | | 1 | Conduit thread: | | | $ abla 1 = \frac{1}{2} - 14 \text{ NPT}$ | | | $\nabla 2 = \frac{3}{4} - 14 \text{ NPT}$ | | Α | Connection head: | | | C = Cast iron | | | ▼A = Aluminum | | | S = Stainless steel | | To order s | ensor assembly, stop here. | | To order v | vith transmitter, add: | | 509 | Temptran™ transmitter model: | | | 205 = TT205: Fixed Range, Miniature | | | 509 = TT509: Programmable, Hockey Puck | | | 511 = TT511: HART® Programmable, Hockey Puck | | Α | Temperature range codes starting on page 4-20 | | | or at www.minco.com | | AS5192EL | J120P1A509A = Sample part number | | | | **▼**= STANDARD OPTIONS ## Tip/sensitive Direct Immersion RTDs ### Overview Mount sensors directly in fluid flow for fast response. Probes are rated to 100 psi (6.9 bar). For use in non-corrosive fluids only. **CONDUIT THREAD** - RTD probe for use to 260°C 500°F) - · Adjustable fluid seal fitting - · Cast iron, stainless steel, or aluminum connection head ### **Specifications** Temperature range: -50 to 260°C (-58 to 500°F). ### Material: Probe: Stainless steel with copper alloy tip. Fitting: Stainless steel, silicone rubber O-ring. Connection head: Cast iron, aluminum, or stainless steel. Pressure rating: 100 psi (6.9 bar). Insulation resistance: 100 megohms minimum at 100 VDC, leads to case. Connection: Terminal block for wires to AWG 14. Time constant: Typical value in moving water: Single element: 2.0 seconds. Dual element: 5.0 seconds. ### **Sensing elements** | Element | | Code | |---|--------------------------|------| | Platinum (0.00392 TCR) 10 | 00 Ω ±0.5% at 0°C | PA | | Platinum (0.00385 TCR) 10
(Meets EN60751, Class B) | 00 Ω ±0.1% at 0°C | ▼PD | | Platinum (0.00385 TCR) 10 | 00 Ω ±0.5% at 0°C | PE | | Copper (0.00427 TCR) 1 | 0 Ω ±0.2% at 25°C | CA | | (dual) 1 | 0 Ω ±0.5% at 25°C | CC | | Nickel (0.00672 TCR) 1. | 20 Ω ±0.5% at 0°C | NA | ### **Temperature Transmitters** Minco's Temptran™ RTD transmitters provide a 4 to 20 mA signal or HART® Protocol that can be sent over long distances with a simple 2-wire system. See Section 4 for complete temperature transmitter specifications. **Special high-accuracy calibration:** For high system accuracy specify transmitters with matched calibration. Calibration data traceable to NIST will also be provided. Get more information on page 4-22. ### Specification and order options | specification and order options | | | | |---------------------------------|--|--|--| | AS5200 | Assembly number ▼AS5200: Single element ▼AS5201: Dual element | | | | PD | Sensing element from table | | | | 100 | Insertion depth D: Specify in 0.1" increments (Ex: 100 = 10.0 inches) ▼:15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240, 300, 360 | | | | Z | Leads per sensing element: Y = 2 leads ▼ Z = 3 leads (required for CA and CC elements) X = 4 leads (PD elements only) | | | | 1 | Conduit thread:
$V = \frac{1}{2} - 14 \text{ NPT}$
$2 = \frac{3}{4} - 14 \text{ NPT}$ | | | | A | Connection head: C = Cast iron ▼A = Aluminum S = Stainless steel | | | | | r sensor assembly, stop here.
r with transmitters (single platinum element only) add: | | | | 508 | Temptran™ transmitter model: 211 = TT211: Fixed Range (2-lead RTDs) 508 = TT508: Programmable (2 & 3-lead RTDs) 511 = TT511: HART® Programmable (2, 3, & 4-lead RTDs) | | | | А | Temperature range codes starting on page 4-20 or at www.minco.com | | | | 1 | Calibration: 1 = Nominal calibration 2 = Match calibrated, 0.75% total system accuracy. For other calibration options, contact Minco | | | | AS5200 | AS5200PD100Z1A508A1 = Sample part number | | | **▼**= STANDARD OPTIONS ## Tip/sensitive Direct Immersion Thermocouples ### Overview Mount sensors directly in fluid flow for fast response. Probes are rated to 100 psi (6.9 bar). For use in non-corrosive fluids only. - Thermocouple for use to 260°C 500°F) - · Adjustable fluid seal fitting - · Cast iron, stainless steel, or aluminum connection head ### **Specifications** Temperature range: -50 to 260°C (-58 to 500°F). ### Material: Probe: Stainless steel with copper alloy tip. Fitting: Stainless steel, silicone rubber O-ring. Connection head: Cast iron, aluminum, or stainless steel. Pressure rating: 100 psi (6.9 bar). Insulation resistance: 10 megohms minimum at 100 VDC, leads to case. Ungrounded junctions only. Connection: Terminal block for wires to AWG 14. Time constant: Typical value in moving water: Grounded junction: 1.5 seconds. Ungrounded junction: 7 seconds. ### **Temperature Transmitters** Minco's Temptran™ thermocouple transmitters provide a 4 to 20 mA signal or HART® Protocol that can be sent over long distances with a simple 2-wire system. See Section 4 for complete temperature transmitter specifications. ### Specification and order options | | • | | | |------------|--|--|--| | AS5205 | Assembly number | | | | | AS5205: Single junction | | | | | AS5206: Dual junction | | | | E | Junction type: | | | | | E = Chromel-Constantan | | | | | J = Iron-Constantan | | | | | K = Chromel-Alumel | | | | | T = Copper-Constantan | | | | U | Junction grounding: | | | | | G = Grounded | | | | | U = Ungrounded | | | | 215 | Insertion depth D: | | | | _ | Specify in 0.1" increments (Ex: 215 = 21.5 inches) | | | | Р | | | | | 1 | Conduit thread: | | | | | $1 = \frac{1}{2} - 14 \text{ NPT}$ | | | | | $2 = \frac{3}{4} - 14 \text{ NPT}$ | | | | C | Connection head: | | | | | C = Cast iron | | | | | A = Aluminum | | | | | S = Stainless steel | | | | | ensor assembly, stop here. | | | | To order v | vith transmitter, add: | | | | 509 | Temptran™ transmitter model: | | | | | 205 = TT205: Fixed Range, Miniature | | | | | 509 = TT509: Programmable, Hockey Puck | | | | | 511 = TT511: HART® Programmable, Hockey Puck | | | | Α | Temperature range codes starting on page 4-20 | | | | | or at www.minco.com | | | | AS5205EU | AS5205EU215P1C509A = Sample part number | | | | · · | | | | **▼**= STANDARD OPTIONS ## Tip/sensitive RTDs with Thermowells SHOWN WITH STAINLESS STEEL HEAD AND UNION/NIPPLE EXTENSION ### Overview Thermowells protect sensors from the effects of fluid flow and pressure. These assemblies are spring-loaded for positive probe contact against the bottom of the thermowell. The probe's
copper alloy tip provides superior time response and reduces error from stem conduction. - 316 stainless steel thermowell - Tip-sensitive RTD probe for use to 260°C 500°F) - · Spring-loaded probe - Cast iron, stainless steel, or aluminum connection head ### **Specifications** Temperature range: -50 to 260°C (-58 to 500°F). #### Material Probe: Stainless steel with copper alloy tip. Connection head: Cast iron, aluminum, or stainless steel. Thermowell: 316 stainless steel. Extension: Stainless steel. **Pressure rating:** 7000 psi (483 bar) at 21°C, reducing to 6300 psi (433 bar) at 260°C. **Standard U dimensions:** 2.5, 4.5, 6.0, 7.5, 8.0, 10.5, 13.5, 16.5, and 22.5". **Insulation resistance:** 100 megohms minimum at 100 VDC, leads to case. Connection: Terminal block for wires to AWG 14. Time constant: 17 seconds typical in moving water. ### **Sensing elements** | Element | Code | |---|------| | Platinum (0.00392 TCR) 100 Ω ±0.5% at 0°C | PA | | Platinum (0.00385 TCR) 100 Ω ±0.1% at 0°C (Meets EN60751, Class B) | ▼PD | | Platinum (0.00385 TCR) 100 Ω ±0.5% at 0°C | PE | | Copper (0.00427 TCR) 10 Ω ±0.2% at 25°C | CA | | (dual) 10 Ω ±0.5% at 25°C | CC | | Nickel (0.00672 TCR) 120 Ω ±0.5% at 0°C | NA | ### **Temperature Transmitters** Minco's Temptran™ RTD transmitters provide a 4 to 20 mA signal or HART® Protocol that can be sent over long distances with a simple 2-wire system. See Section 4 for complete temperature transmitter specifications. **Special high-accuracy calibration:** For high system accuracy specify transmitters with matched calibration. Calibration data traceable to NIST will also be provided. Get more information on page 4-22. ### Specification and order options | Specime | ation and order options | | |--------------------|--|--| | AS5140 | Assembly number ▼AS5140: Single element RTD ▼AS5141: Dual element RTD | | | CA | Sensing element from table | | | 60 | Thermowell length U: Specify in 0.1" increments (Ex: 60 = 6.0 inches) ▼:15, 20, 25, 30, 40, 45, 60, 75, 90, 100, 105, 120, 150 | | | Z | Leads per sensing element: Y = 2 leads ▼ Z = 3 leads (required for CA and CC elements) X = 4 leads (PD elements only) | | | 1 | Conduit thread:
$V = \frac{1}{2} - 14 \text{ NPT}$
$2 = \frac{3}{4} - 14 \text{ NPT}$ | | | A | Connection head: C = Cast iron ▼ A = Aluminum S = Stainless steel | | | 1 | Thermowell process thread:
$V = \frac{1}{2} - 14 \text{ NPT}$
$2 = \frac{3}{4} - 14 \text{ NPT}$ | | | U | Extension option: P = Coupling/nipple extension ▼N = No extension ▼U = Union/Nipple extension | | | | r sensor assembly, stop here.
r with transmitters (single platinum element only) add: | | | 508 | Temptran™ transmitter model: 211 = TT211: Fixed Range (2-lead RTDs) 508 = TT508: Programmable (2 & 3-lead RTDs) 511 = TT511: HART® Programmable (2, 3, & 4-lead RTDs) | | | Α | Temperature range codes starting on page 4-20 or at www.minco.com | | | 1 | Calibration: 1 = Nominal calibration 2 = Match calibrated, 0.75% total system accuracy. For other calibration options, contact Minco | | | AS5140 | AS5140CA60Z21A1U508A1 = Sample part number | | **▼**= STANDARD OPTIONS ## Tip/sensitive Thermocouples with Thermowells SHOWN WITH ALUMINUM HEAD AND COUPLING/NIPPLE EXTENSION ### Overview Thermowells protect sensors from the effects of fluid flow and pressure. These assemblies are spring-loaded for positive probe contact against the bottom of the thermowell. The probe's copper alloy tip provides superior time response and reduces error from stem conduction. - 316 stainless steel thermowell - Tip-sensitive thermocouple for use to 260°C 500°F) - Spring-loaded probe - · Cast iron, stainless steel, or aluminum connection head ### **Specifications** Temperature range: -50 to 260°C (-58 to 500°F). #### Material: Probe: Stainless steel with copper alloy tip. Connection head: Cast iron, aluminum, or stainless steel. Thermowell: 316 stainless steel. Extension: Stainless steel. **Pressure rating:** 7000 psi (483 bar) at 21°C, reducing to 6300 psi (433 bar) at 260°C. **Standard U dimensions:** 2.5, 4.5, 6.0, 7.5, 8.0, 10.5, 13.5, 16.5, and 22.5". **Insulation resistance:** 10 megohms min. at 100 VDC, leads to case. Ungrounded junctions only. Connection: Terminal block for wires to AWG 14. Time constant: Typical value in moving water. Grounded junction: 17 seconds. Ungrounded junction: 22 seconds. ### **Temperature Transmitters** Minco's Temptran™ thermocouple transmitters provide a 4 to 20 mA signal or HART® Protocol that can be sent over long distances with a simple 2-wire system. See Section 4 for complete temperature transmitter specifications. ### Specification and order options | AS5145 | Assembly number | | |----------|--|--| | | AS5145: Single junction TC | | | | AS5146: Dual junction TC | | | Е | Junction type: | | | | E = Chromel-Constantan | | | | J = Iron-Constantan | | | | K = Chromel-Alumel | | | | T = Copper-Constantan | | | U | Junction Grounding: | | | | G = Grounded | | | | U = Ungrounded | | | 135 | Thermowell length U: | | | | Specify in 0.1" increments (Ex: 135 = 13.5 inches) | | | Р | | | | 1 | Conduit thread: | | | · | 1 = 1/2 - 14 NPT | | | | $2 = \frac{3}{4} - 14 \text{ NPT}$ | | | С | Connection head: | | | | C = Cast iron | | | | A = Aluminum | | | | S = Stainless steel | | | 1 | | | | ' | Thermowell process thread: | | | | 1 = ½ - 14 NPT
2 = ¾ - 14 NPT | | | | | | | U | Extension option: | | | | P = Coupling/nipple extension | | | | N = No extension | | | | U = Union/Nipple extension | | | | ensor assembly, stop here. | | | | To order with transmitter, add: | | | 509 | Temptran™ transmitter model: | | | | 205 = TT205: Fixed Range, Miniature | | | | 509 = TT509: Programmable, Hockey Puck | | | | 511 = TT511: HART® Programmable, Hockey Puck | | | Α | Temperature range codes starting on page 4-20 | | | | or at www.minco.com | | | AS5145EU | J135P1C1U509A = Sample part number | | | | | | **▼**= STANDARD OPTIONS ## 550°C RTDs with Thermowells SHOWN WITH STAINLESS STEEL HEAD AND UNION/NIPPLE EXTENSION #### Overview Sense temperature in high-pressure fluids and gases. These assemblies are spring-loaded for positive probe contact against the bottom of the thermowell. - 316 stainless steel thermowell - RTD probe for use to 550°C (1022°F) - · Spring-loaded probe - · Cast iron, stainless steel, or aluminum connection head Note: For temperatures less than 260°C (500°F), assemblies using tip-sensitive sensors are recommended. ### **Specifications** ### Temperature range: Thermowell and sensor: -100 to 550°C (-148 to 1022°F). Connection head: Cast iron: 260°C (500°F) max. Aluminum: 316°C (600°F) max. Stainless steel: 121°C (250°F) max. #### Material: Probe: 316 stainless steel. Connection head: Cast iron, aluminum, or stainless steel. Thermowell: 316 stainless steel. Extension: Stainless steel. **Pressure rating:** 7000 psi (483 bar) at 21°C, reducing to 2500 psi (172 bar) at 550°C. **Standard U dimensions:** 2.5, 4.5, 6.0, 7.5, 8.0, 10.5, 13.5, 16.5, and 22.5". Insulation resistance: 10 megohms min. at 100 VDC, leads to case. Connection: Terminal block for wires to 14 AWG. Time constant: 23 seconds typical in moving water. ### Sensing elements | • | | | |-------------------------|---------------------------|------| | Element | | Code | | Platinum (0.00391 TCR) | 100 Ω ±0.1% at 0°C | PB | | Platinum (0.00385 TCR) | 100 Ω ±0.1% at 0°C | PD | | (Meets EN60751, Class E | 3) | | ### **Temperature Transmitters** Minco's Temptran™ RTD transmitters provide a 4 to 20 mA signal or HART® Protocol that can be sent over long distances with a simple 2-wire system. See Section 4 for complete temperature transmitter specifications. **Special high-accuracy calibration:** For high system accuracy, specify transmitters with matched calibration. Calibration data traceable to NIST will also be provided. Get more information on page 4-22. ### Specification and order options | AS5160 | Assembly number AS5160 | | |--------|--|--| | PB | Sensing element from table | | | 105 | Thermowell length U:
Specify in 0.1" increments (Ex: 105 = 10.5 inches) | | | Z | Leads per sensing element: Y = 2 leads Z = 3 leads X = 4 leads (PD elements only) | | | 2 | Conduit thread:
$1 = \frac{1}{2} - 14 \text{ NPT}$
$2 = \frac{3}{4} - 14 \text{ NPT}$ | | | С | Connection head: C = Cast iron A = Aluminum S = Stainless steel | | | 1 | Thermowell process thread:
$1 = \frac{1}{2} - 14 \text{ NPT}$ $2 = \frac{3}{4} - 14 \text{ NPT}$ | | | U | Extension option: P = Coupling/nipple extension N = No extension U = Union/Nipple extension | | | | sensor assembly, stop here. with transmitters add: | | | 508 | Temptran™ transmitter model: 211 = TT211: Fixed Range (2-lead RTDs) 508 = TT508: Programmable (2 & 3-lead RTDs) 511 = TT511: HART® Programmable (2, 3, & 4-lead RTDs) | | | Α | Temperature range codes starting on page 4-20 or at www.minco.com | | | 1 | Calibration: 1 = Nominal calibration 2 = Match calibrated, 0.75% total system accuracy. For other calibration options, contact Minco | | **▼**= STANDARD OPTIONS ### 550°C Thermocouples with Thermowells SHOWN WITH ALUMINUM HEAD AND COUPLING/NIPPLE EXTENSION ### Overview Sense temperature in high-pressure fluids and gases. These assemblies are spring-loaded for positive probe contact against the bottom of the thermowell. Note: For temperatures less than 260°C (500°F), assemblies using tip-sensitive sensors are recommended. - 316 stainless steel thermowell - Thermocouple probe for use to 550°C
(1022°F) - Spring-loaded probe - · Cast iron, aluminum or stainless steel connection head ### **Specifications** #### **Temperature range:** Thermowell and sensor: -100 to 550°C (-148 to 1022°F). Connection head: Cast iron: 260°C (500°F) max. Aluminum: 316°C (600°F) max. Stainless steel: 121°C (250°F) max. ### Material: Probe: 316 stainless steel. Connection head: Cast iron, aluminum, or stainless steel. Thermowell: 316 stainless steel. Extension: Stainless steel. **Pressure rating:** 7000 psi (483 bar) at 21°C, reducing to 2500 psi (172 bar) at 550°C. #### **Standard U dimensions:** 2.5, 4.5, 6.0, 7.5, 8.0, 10.5, 13.5, 16.5, and 22.5". **Insulation resistance:** 10 megohms min. at 100 VDC, leads to case. Ungrounded junctions only. **Connection:** Terminal block for wires to 14 AWG. **Time constant:** 60 seconds typical in moving water. ### **Temperature Transmitters** Minco's Temptran™ thermocouple transmitters provide a 4 to 20 mA signal or HART® Protocol that can be sent over long distances with a simple 2-wire system. See Section 4 for complete temperature transmitter specifications. ### Specification and order options | specification and order options | | | | |---------------------------------|---|--|--| | AS5165 | Assembly number: AS5165 | | | | К | Junction type: E = Chromel-Constantan J = Iron-Constantan K = Chromel-Alumel | | | | U | Junction Grounding: G = Grounded U = Ungrounded | | | | 135 | Thermowell length U:
Specify in 0.1" increments (Ex: 135 = 13.5 inches) | | | | Р | | | | | 1 | Conduit thread:
1 = 1/2 - 14 NPT
2 = 3/4 - 14 NPT | | | | С | Connection head: C = Cast iron A = Aluminum S = Stainless steel | | | | 1 | Thermowell process thread:
$1 = \frac{1}{2} - 14 \text{ NPT}$ $2 = \frac{3}{4} - 14 \text{ NPT}$ | | | | U | Extension option: P = Coupling/nipple extension N = No extension U = Union/Nipple extension | | | | | To order sensor assembly, stop here. To order with transmitter, add: | | | | 509 | Temptran™ transmitter model: | | | | | 205 = TT205: Fixed Range, Miniature
509 = TT509: Programmable, Hockey Puck
511 = TT511: HART® Programmable, Hockey Puck | | | | Α | Temperature range codes starting on page 4-20 or at www.minco.com | | | | AS5165KU | AS5165KU135P1C1U509A = Sample part number | | | **▼**= STANDARD OPTIONS ### **Overview** Whether you need to monitor bearing temperature, process temperature, or virtually any temperature in a hazardous area, Minco's AS9 series temperature sensor assembly can be configured to fit your application, and is certified to satisfy your requirements. Minco's AS9 series temperature sensors offers a single product with global certifications simplifying inventory management and reducing the complexities associated with complying with multiple regional standards. - Approval agencies: IECEx, ATEX, CSAcus (Canada and United States) - Area classifications: Zone 0, Zone 1, Zone 2, Class I Division 1. Class I Division 2 - Protection methods: flameproof (Ex d), increased safety (Ex e), intrinsic safety (Ex i), explosionproof (XP), dustignitionproof (DIP), dust ignition protection by enclosure (Ex tb) - Probe options: tip-sensitive, all stainless steel, mineral insulated - Output options: resistance (RTD), voltage (thermocouple), current (4-20 mA), digital (HART®) - Fitting options: spring-loaded, welded, union/ nipple, ½-14 NPT, G ½ (ISO 228-1) - Connection head options: copper-free aluminum (IP66/NEMA 4), powder coated aluminum (IP66/NEMA 4X), stainless steel (IP66/NEMA 4X), various conduit threads - Thermowell options: threaded, flanged, tapered, reduced tip ### **Certifications** Minco's AS9 sensors are certified by multiple agencies. Consult the following list to learn more: #### IECEx (IEC 60079): Ex ia IIC T6...T2 Ga IP66 Ex db IIC T6...T2 Gb IP66 Ex tb IIIC T85...T160°C Db ### ATEX (EN 60079): - 🐼 II 1 G Ex ia IIC T6...T2 Ga IP66 - 2 G Ex db IIC T6...T2 Gb IP66 - (Ex) 2 D Ex tb IIIC T85...T160°C Db ### CSA Canada (CSA C22.2): Class I, Zone 0, Ex ia IIC T6...T2 Class I, Zone 1, Ex db IIC T6...T2 Class II, Zone 21, Ex tb IIIC T85...T160°C IS/XP Class I, Division 1, Groups B, C, D T6...T2 Class II, Division 1, Groups E, F, G T85...T160°C Class III, Division 1 ### CSA USA (NEC 500 & 505): Class I, Zone 0, AEx ia IIC T6...T2 Class I, Zone 1, AEx db IIC T6...T2 Class II, Zone 21, AEx tb IIIC T85...T160°C IS/XP Class I, Division 1, Groups B, C, D T6... T2 Class II, Division 1, Groups E, F, G T85...T160°C Class III, Division 1 ### Select Probes and Fittings ### **Probe/Fitting Specifications** | Probe Type | Temperature Range Probe/Process | |------------------|---------------------------------| | 0, 1, 2, 3, 6, 7 | -50 to 260°C (-58 to 500°F) | | 4, 5, 8, 9 | -50 to 600°C (-58 to 1112°F) | | Fitting Type | Pressure Rating | |--------------|--------------------| | 0, 3, 5, 8 | 50 psi (3.4 bar) | | 1, 6 | 715 psi (49.3 bar) | | 2, 7 | None | | Probe Type | Material (probe) | |------------------|--| | 0, 1, 6, 7 | Stainless steel with copper alloy tip for faster time response | | 2, 3, 4, 5, 8, 9 | Stainless steel | Not seeing your ideal configuration? Contact us for a custom solution! | AS9 | Specification | | | |--|--|--|---| | 0 | Probe type: Tip-sensitive RTD Stem-sensitive RTD Mineral-insulated (MgO) RTD Tip-sensitive thermocouple Mineral-insulated (MgO) thermocouple | Simplex
0
2
4 ¹
6
8 ⁴ | Duplex 1 3 5 ² 7 9 ⁴ | | 0 | Probe diameter: 0 = 6.4 mm (.250") 1 = 6.0 mm (.236") 2 = 5.5 mm (.215") 3 = 5.5 mm (.215"); thick wall for bending by hand 4 = 4.8 mm (.188") | | | | Process thread \ fitting type: 0 = ½-14 NPT \ release knob spring-loaded 1 ²³ = ½-14 NPT \ welded 2¹ = ½-14 NPT \ fixed spring-loaded 3 = ½-14 NPT \ set screw spring-loaded 5 = G ½ \ release knob spring-loaded 6 ²³ = G ½ \ welded 7¹ = G ½ \ fixed spring-loaded 8 = G ½ \ set screw spring-loaded | | | | | AS900 | OPD100W3A0X0X1N1 = Sample part r | number | | - 1 Only available for Probe diameter options 0, 1 - 2 Only available for Probe diameter option 0 - 3 Only available for Probe type options 2, 3, 4, 5, 8, 9 - 4 Not available for Probe diameter option 2 ### **Insulation resistance:** - 1000 megohms min at 100 VDC, leads to case. - 100 megohms min at 100 VDC, leads to case (ungrounded junction thermocouples). - 10 megohms min at 100 VDC, leads to case (mineral insulated RTDs and ungrounded mineral insulated thermocouples) ### Dielectric strength: • 600 Vrms at 60 Hz for 2 seconds with 5 mA maximum leakage current (probe leads to connection head). ### Select Sensing Element, Insertion Depth, and Lead Configuration ### More probe specifications | Code | RTD element specifications | |------------------|--| | PA | Platinum (0.00392 $\Omega/\Omega/^{\circ}$ C); 100 Ω ±0.5% at 0°C Accuracy: ±1.3°C at 0°C | | PD | Platinum (0.00385 $\Omega/\Omega/^{\circ}$ C); 100 Ω ±0.12% at 0°C Accuracy: ±0.3°C at 0°C (EN60751 Class B) | | PM | Platinum (0.00385 $\Omega/\Omega/^{\circ}$ C); 100 Ω ±0.06% at 0°C Accuracy: ±0.15°C at 0°C (EN60751 Class A) | | PF ⁷ | Platinum (0.00385 $\Omega/\Omega/^{\circ}$ C); 1000 Ω ±0.12% at 0°C Accuracy: ±0.3°C at 0°C (EN60751 Class B) | | PW ⁷ | Platinum (0.00375 Ω/Ω /°C); 1000 Ω ±0.12% at 0°C Accuracy: ±0.3°C at 0°C | | CA ⁵⁷ | Copper (0.00427 Ω/Ω /°C); 10 Ω ±0.2% at 25°C Accuracy: ±0.5°C at 25°C | | CC ⁶⁷ | Copper (0.00427 Ω/Ω /°C); 10 Ω ±0.5% at 25°C Accuracy: ±1.3°C at 25°C | | NA ⁷ | Nickel (0.00672 $\Omega/\Omega/^{\circ}$ C); 120 Ω ±0.5% at 0°C Accuracy: ±0.8°C at 0°C | | NB ⁶ | Nickel (0.00618 $\Omega/\Omega/^{\circ}$ C); 100 Ω ±0.22% at 0°C Accuracy: ±0.4°C at 0°C (DIN 43760 Ni 100) | ⁵⁻Simplex only Note: See interchangeability tables for accuracy over the entire temperature range. ### **Insertion depth:** - If no thermowell or nipple/union extension, measured from thread engagement on fitting as shown in diagram above. If nipple/union extension but no thermowell, measured from thread engagement on nipple. If threaded thermowell, measured from end of thermowell threads as shown in diagram on page 5. If flanged thermowell, measured from face of flange as shown in diagram on page 5. - Minimum: 35mm (only applies when no extension and/or no thermowell are specified). - Maximum: 3048mm probe length. (Maximum insertion depth will vary, depending on selected options.) | Code | Thermocouple element specifications | |------|---| | Е | Chromel-Constantan | | J | Iron-Constantan | | K | Chromel-Alumel | | Т | Copper-Constantan | | _G | Grounded: thermocouple junction internally grounded to case | | _U | Ungrounded: thermocouple junction electrically isolated from case | ### Thermocouple accuracy: Standard tolerances per ASTM E230/E230M. ### **Probe/Sensing Element Options** | AS9 | Specification | |--
--| | PD | Sensing element For RTD enter two letter code from table on left. For Thermocouple, enter E, J, K or T thermocouple type plus U or G for junction type as shown above. | | 100 | Insertion depth (mm) | | W | Leads per sensing element (colors shown are first element \\ optional second element) Y ⁸ = 2 (1-red/1-white\\1-yellow/1-blue) V ⁸ = 2 (1-white/1-red\\1-yellow/1-black) (EN60751) Z = 3 (1-red/2-white\\1-blue/2-yellow) W = 3 (1-white/2-red\\1-yellow/2-black) (EN60751) X = 4 (2-red/2-white\\2-yellow/2-blue) U ⁹ = 4 (2-white/2-red\\2-yellow/2-black) (EN60751) P = thermocouple (colors per ASTM E230/E230M) | | AS9000PD100W3A0X0X1N1 = Sample part number | | $8\,\hbox{-}\,\text{Not}$ available for Sensing element options CA, CC 9-Not available for simplex probe types. ⁶⁻Duplex only ^{7 –} Not available for Probe type options 4, 5 ### Select Connection Head and Optional Extension | Connection head material | Temperature range connection head/ambient | |--------------------------|---| | A, E, S | -50 to 121°C (-58 to 250°F) | | Connection head material | Ingress protection | |--------------------------|--------------------| | E, S | IP66 (Type 4X) | | А | IP66 (Type 4) | | Connection head material | Material (head) | |--------------------------|---------------------------------------| | А | A360.1 aluminum
(0.6% copper max.) | | Е | A360.1 aluminum with powder coating | | S | Type 316 stainless steel | | Extension type, length | Material (nipple/union) | | |------------------------|--------------------------|--| | 1,2,3,4,5,6,7,8 | Type 316 stainless steel | | ### **Connection Head/Extension Options** | AS9 | Specification | |--------|--| | 3 | Conduit thread:
3 = 1/2" - 14 NPT
4 = 3/4" - 14 NPT
5 = M20 x 1.5 | | А | Connection head material: A = Aluminum E = Aluminum powder-coated S = Stainless steel D ¹⁰ = Aluminum with display indicator (coming soon) | | 0 | Extension type, length: 0 = No extension; 1 = 1/2" -14 NPT nipple/union, L = 1.8" (46mm) 2 = 1/2" -14 NPT nipple/union, L = 2.6" (66mm) 3 = 1/2" -14 NPT nipple/union, L = 3.6" (91mm) 4 = 1/2" -14 NPT nipple/union, L = 4.6" (117mm) 5 = 1/2" -14 NPT nipple/union, L = 5.6" (142mm) 6 = 1/2" -14 NPT nipple/union, L = 6.6" (168mm) 7 = 1/2" -14 NPT nipple/union, L = 7.6" (193mm) 8 = 1/2" -14 NPT nipple/union, L = 8.6" (218mm) 9 = Special order - contact Minco for options | | AS9000 | PD100W 3A0 X0X1N1 = Sample part number | | | ires Temptran™ code option 7. Not available for Sensing element | ### Select Optional Thermowell ### Thermowell Specifc ations ### 1. Specify thermowell type | Code | Thermowell type | | |------|--------------------------------|--| | Α | 1" RF (Raised Face) | | | В | 1.5" RF (Raised Face) | | | С | 2" RF (Raised Face) | | | D | 3" RF (Raised Face) | | | E | 1" RTJ (Ring Type Joint) | | | F | 1.5" RTJ (Ring Type Joint) | | | G | 2" RTJ (Ring Type Joint) | | | Н | 3" RTJ (Ring Type Joint) | | | J | Threaded, reduced tip | | | K | Threaded, tapered | | | X0 | No thermowell (skip 2a and 2b) | | ### 2a. If Flange mount thermowell, specify rating and shaft design | Code | Rating and shaft design | | |------|-------------------------|--| | 0 | 150# tapered | | | 1 | 300# tapered | | | 2 | 600# tapered | | | 3 | 900#/1500# tapered | | | 4 | 2500# tapered | | | 5 | 150# straight | | | 6 | 300# straight | | | 7 | 600# straight | | | 8 | 900#/1500# straight | | | 9 | 2500# straight | | ### 2b. If Thread mount (code J or K) thermowell, specify process thread $\,$ | Code | Process thread | |------|----------------| | 0 | 1/2 –14 NPT | | 1 | 3/4 – 14 NPT | | 2 | 1-11½ NPT | | 3 | G 1/2 | ### 3. Specify thermowell material | Code | Material | | |------|--------------------|--| | X | No thermowell | | | А | Type 316/316L SST | | | В | Type 304 SST | | | J | Hastelloy C-276 | | | К | Monel 400 | | | N | Carbon Steel C1018 | | ### **Thermowell Options** | Code | Specifc ation | |---|---| | х | Thermowell mounting type:
select code from table 1 at left | | 0 | Thermowell rating/shaft or thread:
select code from table 2a or 2b at left | | Х | Thermowell material: select code from table 3 above | | AS9000PD100W3A0 X0X 1N1 = Sample part number | | Finish the part number by specifying your transmitter choice ### **Transmitter Specifications** Note: TT111 series transmitter is certified only for North America use in explosionproof (XP) and flameproof (Ex d) applications | Temptran™ code | Base model
number | Agency approvals | |----------------|----------------------|---------------------------------------| | 1 | TT518 | ATEX
CSA (USA and Canada)
IECEx | | 2 | TT519 | ATEX
IECEx | | 6 | TT520 | ATEX
CSA (USA and Canada)
IECEx | | 7 | TT521 | ATEX
CSA (USA and Canada)
IECEx | ### **Transmitter Options (single input only)** | AS9 | Specification | |--------|--| | 1 | Temptran™ code: 0 = TT111 (2-lead RTD input; 4-20 mA output) 1 = TT518 (3-lead RTD input; 4-20 mA output) 2 = TT519 (thermocouple input; 4-20 mA output) 5 = TT246 (3-lead RTD input; 1-5 VDC output) 6 = TT520 (any input; 4-20 mA output) 7 = TT521 (any input; 4-20 mA output + HART®) | | N | Temperature range code: For a list of Temperature range codes, download a Sensors Design Guide from Minco.com or contact Minco for additional range options. | | 1 | Calibration (options 2, 3, 4 available for Simplex RTD configurations only): 1 = Calibrated to sensing element nominal values 2 = Match calibrated for ±0.75% of span system accuracy 3 = Match calibrated for ±0.50% of span system accuracy 4" = Match calibrated for ±0.20% of span system accuracy | | AS9000 | PD100W3A0X0X 1N1 = Sample part number | 11 – System accuracy = $\pm 0.20\%$ of span or ± 0.1 °C, whichever is greater. ### Calibration Transmitters can be calibrated to nominal resistance values of the RTD (Calibration option 1). Total system error includes the tolerances of both the transmitter and the RTD sensor. Match calibration (Calibration options 2, 3, 4) uses actual resistance of the RTD to calibrate the transmitter. This effectively eliminates the sensor tolerance from system accuracy calculations. A calibration report with traceability to NIST and/or SI is provided with Calibration option 2, 3, or 4. Calibration options 2, 3, and 4 are not available for thermocouples or duplex RTDs. ### **Eurostyle Sensors** ### Overview These low priced assemblies come complete with thermowells, spring-loaded probes, and connection heads. They provide accurate sensing and quick response in liquid or air streams. Specify U.S. or metric thread for global compatibility. - Compact, economical RTD or thermocouple assembly - Metric straight thread or U.S. tapered thread - Tip-sensitive probe for use to 260°C (500°F) - Optional European Form B connection head to DIN 43729 - Stainless steel thermowell ### **Temperature Transmitters** Minco's Temptran™ RTD transmitters provide a 4 to 20 mA signal or HART® Protocol that can be sent over long distances with a simple 2-wire system. See Section 4 for complete temperature transmitter specifications. **Special high-accuracy calibration:** For high system accuracy, specify transmitters with matched calibration. Calibration data traceable to NIST will also be provided. Get more information on page 4-22. ### **Specifications** Temperature range: -50 to 260°C (-58 to 500°F). #### Material: Probe: Stainless steel with copper alloy tip. Connection head: Cast aluminum. Thermowell: 300 series stainless steel. **Pressure rating:** 2755 psi (190 bar) at 25° C, reducing to 493 psi (34 bar) at 600°C. **Insulation resistance:** 10 megohms min. at 100 VDC, leads to case. Ungrounded junctions only on thermocouples. **Connection:** Terminal block for wires to 14 AWG. Time constant: Typical in moving water: RTD: 35 seconds. Thermocouple: 27 seconds. **▼**= STANDARD OPTIONS ## **Eurostyle Sensors** ### **Sensing elements** | RTD sensing element | | Code | |--|--------------------------------|------| | Platinum (0.00392 TCR) | 100 Ω ±0.5% at 0°C | PA | | Platinum (0.00385 TCR)
(Meets EN60751, Clas | 100 Ω ±0.1% at 0°C s B) | PD | | Platinum (0.00385 TCR) | 100 Ω ±0.5% at 0°C | PE | | Copper | 10 Ω ±0.2% at 25°C | CA | | (dual) (0.00427 TCR) | 10 Ω ±0.5% at 25°C | CC | | Nickel (0.00672 TCR) | 120 Ω ±0.5% at 0°C | NA | ### RTD specification and order options | | · | |----------|---| | AS5240 | Assembly number: | | |
AS5240: Single element RTD | | | AS5241: Dual element RTD | | PD | Sensing element from table | | 40 | TW length U in 0.1" increments
[Ex: 40 = 4.0 inches (102 mm)] | | Z | Leads per sensing element:
Y = 2 leads | | | Z = 3 leads (required for CA/CC) | | | X = 4 leads (single element only) | | 2 | Conduit thread:
1 = ½, - 14 NPT | | | $2 = \frac{3}{4} - 14 \text{ NPT}$ | | | 3 = PG cable gland (Eurostyle only) | | Α | Connection head: | | | A = Standard aluminum head | | | E = Eurostyle aluminum head | | 1 | TW process thread:
$1 = \frac{1}{2} - 14 \text{ NPT}$ | | | $2 = \frac{3}{4} - 14 \text{ NPT}$ | | | $3 = ISO 228/1 - G_{1/2}$ | | To order | r sensor assembly, stop here. | | To order | with transmitters, add: | | TT520 | Temptran™ model: | | | TT520: Programmable (2, 3, & 4-lead RTDs) | | | TT521: HART® Programmable (2, 3, & 4-lead RTDs) | | A | Temperature range codes starting on page 4-20 or at www.minco.com | | 1 | Calibration: | | | 1 = Nominal calibration | | | 2 = Match calibrated, 0.75% total system accuracy. For other calibration options, contact Minco | | Δ\$52401 | PD40Z2A1TT520A1 = Sample part number | | A332401 | D-022ATT 1320AT - Sample part number | ### Thermocouple specification and order options | AS5245 | Assembly number: | |----------|--| | | AS5245: Single junction TC | | | AS5246: Dual junction TC | | E | Junction type: | | | E = Chromel-Constantan | | | J = Iron-Constantan | | | K = Chromel-Alumel | | | T = Copper-Constantan | | G | Junction grounding: | | | G = Grounded | | | U = Ungrounded | | 135 | TW length U in 0.1" increments | | | Specify in 0.1" increments
[Ex: 135 = 13.5 inches (343 mm)] | | P | [EX. 133 – 13.3 ITICHES (343 ITIIII)] | | • | Condutation of | | 3 | Conduit thread: $1 = \frac{1}{2} - 14 \text{ NPT}$ | | | $2 = \frac{3}{4} - 14 \text{ NPT}$ | | | 3 = PG cable gland (Eurostyle only) | | F | Connection head: | | E | A = Standard aluminum head | | | E = Eurostyle aluminum head | | 3 | TW process thread: | | ٦ | 1 = 1/2 - 14 NPT | | | $2 = \frac{3}{4} - 14 \text{ NPT}$ | | | $3 = ISO 228/1 - G^{-1}/_{2}$ | | To order | sensor assembly, stop here. | | | with transmitters, add: | | TT520 | Temptran™ model: | | | 520 = TT520: Programmable, Hockey Puck | | | 521 = TT521: HART® Programmable, Hockey Puck | | Α | Temperature range codes starting on page 4-20 | | | or at www.minco.com | | AS5245E | G135P3E3520A = Sample part number | **▼**= STANDARD OPTIONS ## **Specifying Custom Assemblies** The standard assemblies in this section will fit a wide variety of installations. However, for more versatility you can create new assemblies from the probes, accessories, and transmitters in the pages listed. ### Follow these steps: ### 1. Choose a probe Select an RTD or thermocouple from Section 2. The section includes tip-sensitive, high temperature, and fast response models. Some have integral fittings or bayonet lockcaps. Factors to consider are: - · Temperature rating - · Compatibility with receiving instruments - Probe style and diameter - · Accuracy vs. cost ### 2. Add a fitting See Section 3 for probe mounting fittings. Adjustable fittings, combined with cut-to-length probes, allow instant fabrication of assemblies to any length required. Included are spring-loaded holders, pressure fittings, and bayonet-style fittings. Factors to consider are: - Temperature rating - Probe diameter - · Correct NPT threads - Pressure ratings - · Compatibility with environment #### 3. Select a thermowell Thermowells protect sensors from the effects of fluid flow and pressure. See Section 3 for a variety of well styles and materials. Factors to consider are: - · Pressure rating - · Compatibility with fluid media - · Insertion depth - · Correct NPT thread ### 4. Attach a connection head Finish off your assembly with a connection head for termination to remote extension wires. See page 3-2 for specifications. Factors to consider are: - · Connection head size - Temperature rating - · Correct pipe threads for fitting and conduit - · Number of terminals or wire nuts - · Hazardous area requirements ### 5. Install a transmitter Transmitters convert sensor output to a 4 to 20 mA current signal, immune to leadwire resistance. See Section 4 for RTD and thermocouple transmitters. Factors to consider are: - Transmitter accepts sensor input - · Transmitter fits connection head - · Ambient temperature range acceptable ### 6. How to calculate probe length All Minco fittings have probe length adders to help you determine total probe length. Total length L is the insertion depth D plus the adder A. Thermowell drawings show an adder to convert thermowell length U to insertion depth D. Then use D plus the fitting adder A to find total probe length L. **▼**= STANDARD OPTIONS ## ► SECTION 2: PROBES - RTDs and thermocouples in a variety of configurations for easy installation - Tip-sensitive and fast response probes for quick and accurate temperature sensing - High temperature probes to 650°C for extreme environments - Single and dual elements offer high reliability - Cut-to-length models are marked with (see page 2-18 for instructions) ### **Section 2: Probes** | Tip-sensitive RTDs and thermocouples | 2-2 to 2-3 | |---|--------------| | Fast response RTDs | 2-4 to 2-5 | | Bayonet mount tip-sensitive RTDs, thermocouples | 2-6 to 2-7 | | Electrically isolated RTDs, thermocouples | 2-8 to 2-9 | | 550°C RTDs, thermocouples | 2-10 to 2-11 | | 600°C RTDs | 2-12 | | Mineral-insulated RTDs | 2-13 | | AS6/S6 Series Agency Certified Probe | 2-14 | |--------------------------------------|------| | Compact plug sensor | 2-17 | | Integrated sensor transmitter | 2-18 | | Conductivity level sensor | 2-19 | | How to shorten cut-to-length probes | 2-20 | | PFA, FEP encapsulation tubing | 2-20 | ## Tip Sensitive RTDs & Thermocouples ### Overview The probe sensing tip is constructed of copper alloy which is twenty times more conductive than stainless steel. The sensors react more quickly to changes and indicate tip temperature instead of stem temperature. The result is better accuracy in thermowells, bearings, and other installations. Minco recommends 0.250" diameter probes for use in thermowells. - · Copper alloy tip for fast response - · Accurate sensing to 260°C (500°F) - · Non-armor models can be user-shortened ### **Specifications** #### Temperature range: **Thermocouple:** -184 to 260°C (-300 to 500°F). **RTD:** -50 to 260°C (-58 to 500°F). ### Case: Stainless steel with copper alloy tip. ### Minimum case length: Thermocouple: 2.5" (63.5 mm). RTD: • Single element probes: 2.8" (71.1 mm). • Dual element probes: 4.0" (101.6 mm). ### Maximum case length: 48" (1220 mm), longer on special order. ### Leads: Thermocouple: Solid thermocouple wire, AWG 20 (except AWG 24 on model TC355). Specify PTFE insulation, stainless steel overbraid, or stainless steel armor. RTD: 2, 3, or 4 leadwires, stranded copper with PTFE insulation. AWG 22, except 0.188" diameter dual probes AWG 24. For 2-lead RTDs add 0.03 Ω per foot (0.05 Ω per foot for 0.188" diameter dual probes) of combined case and lead length to element tolerance. Copper (CA, CC) models must have 3 leads. #### Time constant: Thermocouple: Typical value in moving water: - Grounded junction: 1.5 seconds. - Ungrounded junction: 7 seconds. #### RTD. - 2.0 seconds typical in moving water. - 3.0 seconds for dual element models. ### Pressure rating: 100 psi (6.9 bar). #### Insulation resistance: **Thermocouple:** 10 megohms minimum at 100 VDC, leads to case, ungrounded junctions only. #### RTD - Single element probes: 1000 megohms min. at 500 VDC, leads to case. - Dual element probes: 100 megohms min. at 100 VDC, between elements and leads to case. #### Vibration: Withstands 10 to 2000 Hz at 20 G's min. per MIL-STD-202, Method 204, Test Condition D. #### Shock Withstands 100 G's min. sine wave shock of 8 milliseconds duration. ### **Model numbers: Thermocouples** | | Model for probe diameter: | | | |-----------------|---------------------------|--------------------|--------------------| | | 0.188"
(4.8 mm) | 0.215"
(5.5 mm) | 0.250"
(6.4 mm) | | Single junction | ▼TC354 | ▼ TC356 | ▼ TC358 | | Dual junction | ▼TC355 | ▼ TC357 | ▼TC359 | ### Specification and order options: Thermocouples | TC356 | Model number from table | | |---------|---|--| | Т | Junction type: ▼ E = Chromel-Constantan ▼ J = Iron-Constantan ▼ K = Chromel-Alumel ▼ T = Copper-Constantan | | | G | Junction grounding: ▼ G = Grounded ▼ U = Ungrounded | | | 120 | Case length: Specify in 0.1" increments: Ex: 120 = 12.0 inches ▼: 60, 120, 240 | | | Т | Covering over leadwires: ▼ T = PTFE only G = Glass braid only S = Stainless steel overbraid A = Stainless steel armor | | | 80 | Lead length in inches: ▼80 | | | TC356TG | TC356TG120T80 = Sample part number | | **▼**= STANDARD OPTIONS ## Tip Sensitive RTDs & Thermocouples ### Model numbers: RTD's | Element | Model for probe diameter: | | | |--|---------------------------|---------------|---------------| | | 0.188" | 0.215" | 0.250" | | Cinale alone and DTDs | (4.8 mm) | (5.5 mm) | (6.4 mm) | | Single element RTDs: | No armor o | ver leads | I | | Platinum (0.00392 TCR) 100 Ω ±0.5% at 0°C | ▼ S54PA | ▼ S51PA | ▼S53PA | | Platinum (0.00385 TCR) 100 Ω ±0.06% at 0°C (Meets EN60751, Class A) | ▼S554PM | ▼S551PM | ▼S553PM | | Platinum (0.00385 TCR) 100 Ω ±0.1% at 0°C (Meets EN60751, Class B) | ▼S854PD | ▼S851PD | ▼S853PD | | Platinum (0.00385 TCR) 100 Ω ±0.5% at 0°C | S884PE | S881PE | S883PE | | Copper (0.00427 TCR)
10 Ω ±0.2% at 25°C | S54CA | S51CA | S53CA | | Nickel (0.00672)
120 Ω ±0.5% at 0°C | S54NA | S51NA | S53NA
 | Single element RTDs: | With armor | over leads | | | Add element code
(Ex: S154 =S154NA) | ▼ S154 | ▼ S151 | ▼ S153 | | Dual element RTDs: N | lo armor ov | er leads | | | Platinum (0.00392 TCR) 100 Ω ±0.5% at 0°C | ▼S59PA | ▼S56PA | ▼S57PA | | Platinum (0.00385 TCR) 100 Ω ±0.06% at 0°C (Meets EN60751, Class A) | S559PM | S856PM | S557PM | | Platinum (0.00385 TCR) 100 Ω ±0.1% at 0°C (Meets EN60751, Class B) | ▼S859PD | ▼S856PD | ▼S857PD | | Platinum (0.00385 TCR) 100 Ω ±0.5% at 0°C | S889PE | S886PE | S887PE | | Copper (0.00427 TCR)
10 Ω ±0.5% at 25°C | | S56CC | S57CC | | Nickel (0.00672)
120 Ω ±0.5% at 0°C | S59NA | S56NA | S57NA | | Dual element RTDs: With armor over leads | | | | | Add element code
(Ex: S159 =S159NA) | S159 | S156 | ▼ S157 | ### Specification and order options: RTD's | S59PA | Model number from table | |----------------------------------|---| | 120 | Case length: Specify in 0.1" increments (Ex: 120 = 12.0 inches) ▼: 40, 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240 | | Z | # of leads per sensing element: Y = 2 leads ▼ Z = 3 leads (req'd for copper elements) ▼ X = 4 leads (PD only) | | 36 | Lead length in inches ▼: 36, 80, 120 | | S59PA120Z36 = Sample part number | | Minco also offers probes equivalent to those shown on this page with the added certifications of: - ATEX Ex ia and EX e (Zones 0 and 1) - IECEx Ex ia and Ex e (Zones 0 and 1) - TR CU (EAC) Ex ia and Ex e (Zones 0 and 1) **▼**= STANDARD OPTIONS ## Fast Response RTDs #### Overview These probes have rugged stainless steel cases for use in high pressures or corrosive fluids. Yet their time constants are comparable to copper-tipped probes at 2 to 4 seconds, compared to 8 to 10 seconds for other all-stainless probes. - Unique low-mass element reacts quickly to temperature changes - · Non-armor models can be user-shortened - ATEX, IECEx and TR CU (EAC) Ex e and Ex ia options available ### **Specifications** Temperature range: -269 to 260°C (-452 to 500°F). #### Case material: S601, S603, S604: 316 stainless steel. S602, S614: 304/305 stainless steel. ### Case length: Minimum case length: S602, S604: 2.0" (50.8 mm) with PTFE insulated leads; 3.0" (76.2 mm) with SS braid over leads. S601, S603: 3.0" (76.2 mm). Maximum case length: 48" (1220 mm), longer on special order. Time constant: Typical in moving water: S602, S604, S614: 2 seconds. S601: 3 seconds. S603: 4 seconds. Pressure rating: 1500 psi (103 bar). **Leads:** 2, 3, or 4 leadwires, AWG 22, stranded copper with PTFE insulation, stainless steel braid, or stainless steel armor. For 2-lead RTDs add 0.03 Ω per foot of combined case and lead length to element tolerance (model S602 has AWG 26; add 0.08 Ω per foot for 2-lead). **Insulation resistance:** 1000 megohms minimum at 500 VDC, leads to case. **Vibration:** Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202, Method 204, Test Condition D. **Shock:** Withstands 100 G's minimum sine wave shock of 8 milliseconds duration. ### Sensing elements | RTD sensing element | | Code | |--|---------------------------|------| | Platinum (0.00392 TCR) | 100 Ω ±0.5% at 0°C | ▼PA | | Platinum (0.00385 TCR)
(Meets EN60751, Class B) | 100 Ω ±0.1% at 0°C | ▼PD | | Platinum (0.00385 TCR) | 100 Ω ±0.5% at 0°C | PE | | Platinum (0.00385 TCR)
(N/A for model S602) | 1000 Ω ±0.1% at 0°C | ▼PF | | Copper (0.00427 TCR) | 10 Ω ±0.2% at 25℃ | CA | | Nickel (0.00672 TCR) | 120 Ω ±0.5% at 0°C | NA | ### Specification and order options: ### Fast response probes Specify 0.125" or 0.188" for fastest response, 0.250" or 0.215" for greater strength and cut-to-length capability (PTFE and SS braid models). | S604 | Model number: ▼ \$601: Ø 0.215" (5.5 mm) Cut-to-length probe ▼ \$602: Ø 0.125" (3.2 mm) ▼ \$603: Ø 0.250" (6.4 mm) Cut-to-length probe ▼ \$604: Ø 0.188" (4.8 mm) | |------------------------------------|---| | PD | Sensing element from table ▼: PA, PD, PF | | 240 | Case length:
Specify in 0.1" increments (Ex: 240 = 24.0 inches)
▼: 30, 40, 60, 90, 120, 240 | | X | Number of leadwires:
Y = 2 leads
$\nabla Z = 3$ leads (required for copper elements)
$\nabla X = 4$ leads (PD only) | | 36 | Lead length in inches ▼: 36, 120 | | Т | Covering over leadwires: (S, A not available on S602) ▼T = PTFE only A = Stainless steel braid | | S604PD240X36T = Sample part number | | ### **Short probes** | ▼ S614 | Model number (case with fixed length of 2.4" (61 mm)) | | |---------------|--|--| | PA | Sensing element from table
▼: PA, PD, PF | | | Z | Number of leadwires: Y = 2 leads ▼ Z = 3 leads (required for copper elements) X = 4 leads (PD only) | | | 36 | Lead length in inches
▼36 | | | Т | Covering over leadwires:
▼T = PTFE only S = Stainless steel braid | | | S614PAZ3 | S614PAZ36T = Sample part number | | STOCKED PARTS AVAILABLE ### Fast Response Immersion RTDs #### Overview You can mount these probes directly in fluid streams for accurate, reliable sensing. Time constant is just 2 seconds, compared to 10 seconds for an ordinary stainless probe or up to 50 seconds for a thermowell. The result is more accurate monitoring of dynamic processes. - Pressure rating 1500 psi (103 bar) - Quick reaction to changing fluid and gas temperatures - NPT (U.S.) or metric threads - ATEX, IECEx and TR CU (EAC) Ex e and Ex ia options available ### **Specifications** Temperature range: -269 to 260°C (-452 to 500°F). ### Case material: S623, S628: 316 stainless steel. S634, S639: 304/305 stainless steel. #### Case length: Minimum case length: 1.5" (38.1 mm). Maximum case length: 48" (1220 mm), longer on special order. Time constant: Typical value in moving water: S623, S628: 4 seconds. S634, S639: 2 seconds. Pressure rating: 1500 psi (103 bar). **Leads:** 2, 3, or 4 leadwires, AWG 22, stranded copper with PTFE insulation, stainless steel braid, or stainless steel armor. For 2-lead RTDs add 0.03 Ω per foot of combined case and lead length to element tolerance. **Insulation resistance:** 1000 megohms minimum at 500 VDC, leads to case. **Vibration:** Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202, Method 204, Test Condition D. **Shock:** Withstands 100 G's minimum sine wave shock of 8 milliseconds duration. ### **Sensing elements** | RTD sensing element | | Code | |------------------------|----------------------------|------| | Platinum (0.00392 TCR) | 100 Ω ±0.5% at 0°C | PA | | Platinum (0.00385 TCR) | 100 Ω ±0.1% at 0°C | ▼PD | | (Meets EN60751, Class | B) | | | Platinum (0.00385 TCR) | 100 Ω ±0.5% at 0°C | PE | | Platinum (0.00385 TCR) | 1000 Ω ±0.1% at 0°C | ▼PF | | (N/A for model S602) | | | | Copper (0.00427 TCR) | 10 Ω ±0.2% at 25°C | CA | | Nickel (0.00672 TCR) | 120 Ω ±0.5% at 0°C | NA | ### Specification and order options: ### **Immersion probes** These probes have welded fittings to mount directly into fluid vessels. Add a connection head for termination of extension leads. | S623 | Model number:
▼S623: ½ - 14 NPT thread [2]
S628: ISO 228/1-G½ process thread
(½ - 14 NPT on leads end) | |-----------------------------------|---| | PF | Sensing element from table
▼: PD, PF | | 60 | Case length: Specify in 0.1" increments (Ex: 60 = 6.0 inches) ▼: 20, 60, 120 | | Z | Number of leads:
Y = 2 leads X = 4 leads (PD only)
▼Z = 3 leads (required for copper elements) | | 72 | Lead length in inches ▼: 72 | | Т | Covering over leadwires:
▼T = PTFE only A = Stainless steel armor
S = Stainless steel braid | | S623PF60Z72T = Sample part number | | ### Plug type sensors Save space and get accurate readings with this compact, easy-to-install probe. | S634 | Model number:
S634: 1/ ₂ - 14 NPT thread | |---------------------------------|---| | | S639: ISO 228/1-G1/2 thread | | NA | Sensing element from table | | Υ | Number of leads:
Y = 2 leads X = 4 leads (PD only)
Z = 3 leads (required for copper elements) | | 24 | Lead length in inches | | Т | Covering over leadwires: T = PTFE only S = Stainless steel braid | | S634NAY24T = Sample part number | | ## **Bayonet Mount Tip Sensitive RTDs** #### Overview Bayonet mounting provides easy and inexpensive springloaded installation of probes into solids. All models have a copper alloy tip for fast time response and increased tip sensitivity. See page 3-9 for bayonet fittings or page 3-10 for metric fittings. - Lockcap and spring for twist-and-release spring-loading - Accurate sensing to 260°C (500°F) - ATEX, IECEx and TR CU (EAC) Ex e and Ex ia options available ### **Specifications** **Temperature range:** -50 to 260°C (-58 to 500°F). **Case:** Stainless steel with copper alloy tip. Minimum case length: 3.0" (76.2 mm). Maximum case length: 48" (1220 mm), longer on special order. Time constant: 2 seconds typical in moving water. **Leads:** 2, 3, or 4 leadwires, AWG 22, stranded copper with PTFE insulation, stainless steel armor, and ν_2 " conduit connector. For 2-lead RTDs add 0.03 Ω per foot of combined case and lead length to element tolerance. **Insulation resistance:** 1000 megohms min. at 500 VDC, leads to case. **Vibration:** Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202, Method 204, Test Condition D. **Shock:** Withstands 100 G's minimum sine wave
shock of 8 milliseconds duration. ### **Model numbers** | RTD sensing element | | Model | |---|----------------------------|---------| | Platinum (0.00392 TCR) | 100 Ω ±0.5% at 0°C | ▼S44PA | | Platinum (0.00385 TCR)
(Meets EN60751, Class | 100 Ω ±0.1% at 0°C
s B) | ▼S844PD | | Platinum (0.00385 TCR) | 100 Ω ±0.5% at 0°C | S874PE | | Copper (0.00427 TCR) | 10 Ω ±0.2% at 25°C | S44CA | | Nickel (0.00672 TCR) | 120 Ω ±0.5% at 0°C | ▼S44NA | ### Specification and order options | S44PA | Model number from table | | |----------|--|--| | 120 | Case length: Specify in 0.1" increments (Ex: 120 = 12.0 inches) ▼: 49, 55, 120 | | | Z | Number of leads: Y = 2 leads ▼ Z = 3 leads (required for copper elements) X = 4 leads (PD only) | | | 80 | Lead length in inches ▼: 80 | | | S44PA120 | S44PA120Z80 = Sample part number | | **▼**= STANDARD OPTIONS ## **Bayonet Mount Tip Sensitive Thermocouples** #### Overview Bayonet mounting provides easy and inexpensive springloaded installation of probes into solids. All models have a copper alloy tip for fast time response and increased tip sensitivity. See page 3-9 for bayonet fittings or page 3-10 for metric fittings. - · Lockcap and spring for twist-and-release spring-loading - Accurate sensing to 260°C (500°F) - ATEX, IECEx and TR CU (EAC) Ex e and Ex ia options available ### **Specifications** Temperature range: -50 to 260°C (-58 to 500°F). Case: Stainless steel with copper alloy tip. Minimum case length: 3.0" (76.2 mm). Maximum case length: 48" (1220 mm), longer on special order. **Leads:** Solid thermocouple wire, AWG 20 (single) or AWG 24 (dual). Specify PTFE insulation, glass braid insulation, stainless steel braid over glass braid, or stainless steel armor over PTFE. Time constant: Typical value in moving water: Grounded junction: 1.5 seconds. Ungrounded junction: 7 seconds. **Insulation resistance:** 10 megohms minimum at 100 VDC, leads to case, ungrounded junctions only. **Vibration:** Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202, Method 204, Test Condition D. **Shock:** Withstands 100 G's minimum sine wave shock of 8 milliseconds duration. ### Specification and order options | TC360 | Model number:
▼TC360 = Single junction
▼TC361 = Dual junction | | |---------|---|--| | J | Junction type: E = Chromel-Constantan ▼ J = Iron-Constantan ▼ K = Chromel-Alumel T = Copper-Constantan | | | G | Junction grounding: ▼G = Grounded ▼U = Ungrounded | | | 30 | Case length: Specify in 0.1" increments (Ex: 95 = 9.5 inches) ▼: 30, 120 | | | A | Covering over leadwires: T = PTFE only G = Glass braid ▼A = Stainless steel armor S = Stainless steel overbraid | | | 120 | Lead length in inches ▼: 120 | | | TC360JG | TC360JG30A120 = Sample part number | | **▼**= STANDARD OPTIONS ## **Electrically Isolated RTDs** #### Overview - Electrically isolated sensing tip for "hot" bearings - Accurate sensing to 260°C (500°F) - Copper alloy tip for fast time response and increased tip sensitivity - ATEX, IECEx and TR CU (EAC) Ex e and Ex ia options available ### **Specifications** **Dielectric strength of isolation insulator:** 1000 volts RMS at 60 Hz for 30 seconds, between case sections, 1 mA max. leakage current. Pressure rating: 30 psi (2.1 bar). **Vibration:** Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202, Method 204, Test Condition D. **Shock:** Withstands 100 G's minimum sine wave shock of 8 milliseconds duration. ### **Isolated tip RTDs** | RTD sensing element | Model | | |------------------------|---------------------------|---------| | Platinum (0.00392 TCR) | 100 Ω ±0.5% at 0°C | ▼S52PA | | Platinum (0.00385 TCR) | 100 Ω ±0.1% at 0°C | ▼S852PD | | (Meets EN60751, Class | s B) | | | Platinum (0.00385 TCR) | 100 Ω ±0.5% at 0°C | S882PE | | Copper (0.00427 TCR) | 10 Ω ±0.2% at 25°C | S52CA | | Nickel (0.00672 TCR) | 120 Ω ±0.5% at 0°C | S52NA | Temperature Range: -50 to 260°C (-58 to 500°F). Case: Stainless steel with copper alloy tip. Minimum case length: 4.0" (101.6 mm). Maximum case length: 48" (1220 mm), longer on special order. **Leads:** 2, 3, or 4 leadwires, AWG 22, stranded copper with PTFE insulation. For 2-lead RTDs add $0.03~\Omega$ per foot of combined case and lead length to element tolerance. Time constant: 2 seconds typical in moving water. Insulation resistance: 1000 megohms min. at 500 VDC, leads to case. ### Specification and order options | S52PA | Model number from isolated tip table | | |---|---|--| | 240 | Case length: Specify in 0.1" increments (Ex: 240 = 24.0 inches) ▼: 120, 180, 240 | | | Z | Number of leads: Y = 2 leads ▼Z = 3 leads (required for copper elements) X = 4 leads (PD only) | | | 36 Lead length in inches ▼: 36, 120 S52PA240Z36 = Sample part number | | | **▼= STANDARD OPTIONS**Specifications subject to change ## **Electrically Isolated Thermocouples** #### Overview - Electrically isolated sensing tip for "hot" bearings - Accurate sensing to 260°C (500°F) - · Copper alloy tip for fast time response and increased tip sensitivity - ATEX, IECEx and TR CU (EAC) Ex e and Ex ia options available ### **Specifications** **Dielectric strength of isolation insulator:** 1000 volts RMS at 60 Hz for 30 seconds, between case sections, 1 mA max. leakage current. Pressure rating: 30 psi (2.1 bar). **Vibration:** Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202, Method 204, Test Condition D. **Shock:** Withstands 100 G's minimum sine wave shock of 8 milliseconds duration. Temperature Range: -50 to 260°C (-58 to 500°F). Case: Stainless steel with copper alloy tip. Minimum case length: 4.0" (101.6 mm). Maximum case length: 48" (1220 mm), longer on special order. **Leads:** Solid thermocouple wire, AWG 20 (AWG 24 for stainless steel braid option). Specify PTFE insulation or PTFE with stainless steel armor and shrink tubing over all. **Time constant:** Typical value in moving water: Grounded junction: 1.5 seconds. Ungrounded junction: 7 seconds. **Insulation resistance:** 10 megohms min. at 100 VDC, leads to case, ungrounded junctions only. ### Specification and order options | TC2198 | Model number: TC2198 | | |----------|--|--| | J | Junction type: E = Chromel-Constantan ▼J = Iron-Constantan ▼K = Chromel-Alumel T = Copper-Constantan | | | U | Junction grounding: ▼G = Grounded ▼U = Ungrounded | | | 60 | Case length: Specify in 0.1" increments (Ex: $60 = 6.0$ inches) \mathbf{V} : 60, 120 | | | Т | Covering over leadwires: ▼T = PTFE only ▼A = Stainless steel armor plus shrink tubing S = SS braid over PTFE (5" min. case length) | | | 120 | Lead length in inches ▼: 120 | | | TC2198JU | TC2198JU60T120 = Sample part number | | **▼**= STANDARD OPTIONS ### 550°C RTD Probes #### Overview Install these probes in steam lines, exhaust gases, or wherever you need precise readings of elevated temperatures. RTD probes feature high temperature ceramic elements, assembled into stainless steel cases in a configuration that provides long-term reliable service. Models S80 and S81 can be shortened by the user. You can stock standard lengths and cut them to the size required with an ordinary tubing cutter. Bayonet-style probes have a lockcap and spring for springloaded installation. See page 3-9 for more information on bayonet fittings. - 0.250" diameter cut-to-length RTDs - 0.188" diameter straight and bayonet RTDs ### **Specifications** ### Temperature range: -100 to 550°C (-148 to 1022°F). Leadwires: 500°C (932°F) max. **Case:** 316 stainless steel. Minimum case length: 0.250" diameter: \$80, \$81: 4.0" (101.6 mm). 0.188" diameter: \$71, \$72: 2.0" (50.8 mm) S73, S74: 3.0" (76.2 mm). Maximum case length: 48" (1220 mm), longer on special order. Pressure rating: 1500 psi (103 bar). **Vibration:** Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202, Method 204, Test Condition D. **Shock:** Withstands 100 G's minimum sine wave shock of 8 milliseconds duration. **Leads:** 2 or 3 leadwires, AWG 22, stranded copper with mica/glass insulation. For 2-lead RTDs add 0.04 Ω per foot of combined case and lead length to element tolerance. Time constant: 10 seconds typical in moving water. **Insulation resistance:** 10 megohms min. at 100 VDC, leads to case. #### **Model numbers:** Straight probe: Ø 0.188" (4.8 mm) | Element | | Model | |-------------------------|---------------------------|--------| | | | S71PB | | Platinum (0.00385 TCR)* | 100 Ω ±0.1% at 0°C | ▼S72PD | ### Bayonet probe: Ø 0.188" (4.8 mm) | Element | Model | |--|--------| | | ▼S73PB | | Platinum (0.00385 TCR)* 100 Ω ±0.1% at 0°C | ▼S74PD | ### Cut-to-length: Ø 0.250" (6.4 mm) | Element | Model | |---|--------| | | ▼S80PB | | Platinum (0.00385 TCR)* 100 Ω ±0.1% at 0°C | ▼S81PD | ^{*}Meets EN60751, Class B ### Specification and order options | | <u>-</u> | | |----------|---|--| | S74PD | Model number from table | | | 240 | Case length:
Specify in 0.1" increments (Ex: 240 = 24.0 inches)
▼: 20, 30, 120, 240 | | | Z | Number of leads: $Y = 2$ leads $\nabla Z = 3$ leads | | | 36 | Lead length in inches
▼: 36, 120 | | | S74PD240 | S74PD240Z36 = Sample part number | | **▼**= STANDARD OPTIONS ## 550°C Thermocouple Probes #### Overview Install these probes in steam lines, exhaust gases, or wherever you need precise
readings of elevated temperatures. Bayonet-style probes have a lockcap and spring for springloaded installation. See page 3-9 for more information on bayonet fittings. ### **Specifications** #### Temperature range: -100 to 550°C (-148 to 1022°F). Leadwires: 500°C (932°F) max. Case: 316 stainless steel. 8 milliseconds duration. Minimum case length: 2.5" (63.5 mm) Maximum case length: 48" (1220 mm), longer on special order. Pressure rating: 1500 psi (103 bar). **Vibration:** Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202, Method 204, Test Condition D. Shock: Withstands 100 G's minimum sine wave shock of **Leads:** Solid thermocouple wire, AWG 20. Specify glass braid insulation, stainless steel overbraid, or stainless steel armor. Time constant: 7 seconds typical in moving water. **Insulation resistance:** 10 megohms minimum at 100 VDC, leads to case, ungrounded junctions only. ### Specification and order options | TC173 | Model number:
▼TC173: Straight probe
▼TC171: Bayonet mount | | |---------|--|--| | Е | Junction type: ▼E = Chromel-Constantan J = Iron-Constantan ▼K = Chromel-Alumel T = Copper-Constantan | | | U | Junction grounding: ▼G = Grounded ▼U = Ungrounded | | | 60 | Case length: Specify in 0.1" increments (Ex: 45 = 4.5 inches) ▼: 30, 60, 120, 180 | | | G | Covering over leadwires: ▼G = Glass braid only ▼S = Stainless steel overbraid A = Stainless steel armor | | | 120 | Lead length in inches ▼: 120 | | | TC173EU | TC173EU60G120 = Sample part number | | **▼**= STANDARD OPTIONS ### 600°C RTDs ### Overview These RTDs cover the full temperature scale of the international standard EN60751. Precision sensing elements are capable of measurements from -200 to 600° C (-328 to 1112° F) with typical ice point drift less than $\pm 0.05^{\circ}$ C. - Platinum elements to EN60751, Class A or B - · English and metric diameters ### **Specifications** **Element:** Platinum, 100 Ω at 0°C, TCR = 0.00385 Ω/Ω /°C. **Temperature range:** -200 to 600°C (-328 to 1112°F). Reduced temperature rating for leads and last 2" (50 mm) of case — see leadwire chart. Case: 316 stainless steel. Minimum case length: 2.0" (50.8 mm). Maximum case length: 48.0" (1220 mm), longer on special order. | Probe diameter | Model | |-----------------|---------------| | 0.188" (4.8 mm) | ▼ S914 | | 0.236" (6.0 mm) | ▼ S912 | | 0.250" (6.4 mm) | ▼ S913 | Tolerance: EN60751 Class A or B. Class A: ± 0.06% Class B: ± 0.12% **Repeatability:** Meet IEC requirements. Typical shift less than 0.05° C ($0.02~\Omega$) at 0° C after ten cycles over range. **Stability:** Meet IEC stability specifications after 250 hours exposure to extremes of temperature range. Typical drift is less than 0.05° C $(0.02~\Omega)$ at 0° C. **Vibration:** Will withstand 10 to 5000 Hz at 2 G's minimum per EN60751. **Shock:** Will withstand 250 mm drop onto 8 mm thick steel plate (approximately 1400 G's for 0.08 ms). Time constant: 10 seconds typical in moving water. Pressure rating: 1000 psi (69 bar) at 25°C. Insulation resistance: 10 megohms minimum at 100 VDC, leads to case. ### Leadwire options: | Code | Description | Max. temp.* | |------|---|-----------------| | ▼G | Mica/glass insulated stranded copper,
AWG 22. | 600°C
1112°F | | Т | PTFE insulated stranded copper,
AWG 22. | 260°C
500°F | | С | AWG 24, PTFE insulated, stranded copper wires with silver-plated copper braid and PTFE over all (4 leads only). | 260°C
500°F | ^{*} Temperature rating for leads and last 2" of case. ### Specification and order options | S914 | Model number from table | | |---------|---|--| | PD | 100 Ω Platinum, 0.00385 TCR | | | 06 | Tolerance at 0°C: ▼ 06 = ±0.06%, EN60751 Class A 12 = ±0.12%, EN60751 Class B | | | G | Leadwire code from table | | | 40 | Case length: Specify in 0.1" increments (Ex: 40 = 4.0 inches) ▼: 40, 60, 90, 120, 180 | | | Z | Number of leads:
▼Z = 3 leads
X = 4 leads | | | 120 | Lead length in inches ▼: 120 | | | BS | Probe termination: ▼BS= Boot and spring B = Boot only ▼N = No boot or spring | | | S914PD0 | S914PD06G40Z120BS = Sample part number | | **▼**= STANDARD OPTIONS ### Mineral Insulated RTDs #### Overview Mineral-insulated RTDs provide excellent performance, even when exposed to high levels of shock and vibration in tough industrial environments. Typical applications include process control and steam turbine efficiency measurement. Probes can be bent around a mandrel diameter at least 3 times the probe diameter without kinking. Custom designed RTDs and thermocouples are available. - Mineral MgO packing protects element from shock and contamination - · Field bendable - · Inconel or stainless steel sheath - High precision RTD elements for stable, repeatable measurements - Dual sensing element model S953 is excellent for redundancy and failure protection ### **Specifications** **Element:** Platinum, 100 Ω at 0°C, TCR=0.00385 Ω/Ω /°C. Temperature range: Reduced to 260°C (500°F) for leadwires and potting boot. S932, S933: -200 to 650°C (-328 to 1202°F). S942, S943, S944: -200 to 550°C (-328 to 1022°F). S953: -200 to 260°C (-328 to 500°F). **Tolerance:** EN60751 Class B ($\pm 0.12~\Omega = \pm 0.3$ °C) or Class A ($\pm 0.06~\Omega = \pm 0.15$ °C) Repeatability: Meets EN60751 requirements. Typical shift less than 0.05°C (0.1°F) when cycled over temperature range. **Stability:** Meets EN60751 specifications after 250 hours exposure to extremes of temperature range. Typical drift of less than 0.05° C (0.1° F) at 0° C. **Vibration:** Withstands 10 to 5000 Hz at 2 G's per EN60751. Also withstands 50 to 250 Hz at 50 G's at 500°C. **Shock:** Withstands a 1 meter drop onto an 8 mm steel plate (1 meter is 4 times the EN60751 height requirement of 250 mm). Time constant: 10 seconds typical in moving water. Pressure rating: 69 bar (1000 psi) at 25°C. Insulation resistance: 10 megohms minimum at 100 VDC. ### Single element models | Probe diameter | Max. temp. | Case material | Model | |-----------------|----------------|---------------------|---------------| | 0.236" (6.0 mm) | 550°C (1022°F) | 316 stainless steel | ▼ 5942 | | 0.236" (6.0 mm) | 650°C (1202°F) | Inconel 600 | ▼ S932 | | 0.250" (6.4 mm) | 550°C (1022°F) | 316 stainless steel | ▼ S943 | | 0.250" (6.4 mm) | 650°C (1202°F) | Inconel 600 | ▼ S933 | | 0.188" (4.8 mm) | 550°C (1022°F) | 316 stainless steel | ▼ S944 | ### **Dual element model** | Probe diameter | Max. temp. | Case material | Model | |-----------------|----------------|---------------------|-------| | 0.250" (6.4 mm) | 550°C (1022°F) | 316 stainless steel | S953 | ### Specification and order options | S933 | Model number from table | | | | | | | |--------|--|--|--|--|--|--|--| | PD | 100 Ω platinum, 0.00385 TCR | | | | | | | | 06 | Tolerance at 0°C:
▼ 06 = ±0.06%, EN60751 Class A
(NA for dual element S953)
12 = ±0.12%, EN60751 Class B | | | | | | | | Т | Leadwire insulation: ▼T = PTFE leadwires C = PTFE cable (4 lead only, NA for dual element \$953) | | | | | | | | 30 | Case length: Specify in 0.1" increments (Ex: 30 = 3.0 inches) ▼: 30, 40, 120, 180 | | | | | | | | Z | Number of leadwires: Y = 2 leads per element ▼Z = 3 leads per element X = 4 leads per element | | | | | | | | 120 | Lead length in inches ▼: 120 | | | | | | | | BS | Lead exit configuration: (B or BS option recommended for best lead exit strength) ▼BS = Potting boot and strain relief spring B = Potting boot ▼N = No potting boot or spring | | | | | | | | S933PE | S933PD06T30Z120BS = Sample part number | | | | | | | **▼**= STANDARD OPTIONS ## AS6 and S6-Series Agency Certified Probes ### RTD probes for industrial temperature measurement applications ### **Overview** Minco temperature sensors deliver unmatched performance, value and reliability to meet demanding requirements in a variety of industrial applications. AS6- and S6-series probes conform to European (ATEX), International (IECEx), and Chinese (GB 3836) standards for zones 0-2. AS6- and S6-series probes offer reliable performance against bearings or in air, gas, and fluid measurement applications. - ATEX and IECEx certification - CCC and NEPSI certification for China - Ingress protection: IP54 - Temperature range up to 200°C - Single or dual element probes - Class A and Class B tolerances per EN60751 (IEC 751) - Dielectric strength: <5mA leakage @600 VRMS - All stainless steel case is standard; copper-tip and hightemperature MgO insulated probes are also available ### **Expanded Global Certifications** Minco understands the critical requirements of your applications. We will work with you to ensure that our products meet your requirements for testing and industry certifications. AS6- and S6-series temperature sensor probes and assemblies are multi-certified for use in the following applications: - General Requirements - ATEX Directive 2014/34/EU - EN/ IEC 60079-0 - China GB 3836.1-2010 - Intrinsic Safety Component (ZONE 0) - EN/ IEC 60079-11, Ex ia - China GB 3836.4-2010, Ex ia - Increased Safety Component (ZONE 1) - EN/ IEC 60079-7, Ex e - China GB 3836-3-2010, Ex e - Non-Sparking Component (ZONE 2) - EN/ IEC 60079-15, Ex nA - China GB 3836.8-2014, Ex nA # **€**x ### **Additional Capabilities** Minco's broad development, integration and assembly capabilities make us more than just a sensor supplier. Our capabilities enable
optimal functional and packaging efficiency, as well as greater flexibility for your organization. We offer: - Comprehensive development support - Seamless integration of sensors, transmitters, controllers, heaters, flex circuits and other electronics - Broad based assembly capabilities ## AS6-Series Agency-Certified Probes ### Probe configuration guide Consult with the following table to configure your AS6-series probe and determine its Minco part number. | AS6 | AS6 (A | ATEX/ICECE | Ex certifications) | | | | | | | | Probe Series | | |-----|--------|------------|--|---|--|---------|--------------|----------|----------|----------|----------------------------|-----------------| | 1 | M06 | 6.0mm (0 | 0.315") | | | | | | | | | | | | M08 | 8.0mm (0 | | | | | | | | | Probe Diameter | | | | M10 | 10.0mm (0 | | | | | | | | | Probe Diameter | | | | S25 | 6.4mm (0 | 0.250") | | | | | | | | | | | | 1 | PA | Single Element, 100 Ohm Platinum, 0.392 TCR | | | | | | | | | | | | | PD | Single Element, 100 Ohm Platinum, 0.385 TCR, Class B | | | | | | | | | | | | | PM | Single Element, 100 Ohm Platinum, 0.385 TCR, Class A | | | | | | | | Elamant Toma | | | | | PAPA | Dual Element, 100 Ohm Platinum, 0.392 TCR | | | | | | | | | Element Type | | | | PDPD | Dual Element, 100 Ohm Platinum, 0.385 TCR, Class B | | | | | | | | | | | | | PMPM | Dual Element, 100 Ohm Platinum, 0.385 TCR, Class A | | | | | | | | | | | | | 1 | 100 Specify in 25mm increments; Standard lengths: 100mm (3.9"), 200mm (7.9"), 500mm (19.7mm) | | | | | | | | Insertion Length | | | | | | 1 | W | 3 lead wires per element, IEC EN60751 colors | | | | | | Number of Leads | | | | | | | U | 4 lead | wires p | er elem | nent, IE | C EN6075 | 51 color | s | Number of Leads | | | | | | 1 | Х | No f | fitting | | | | | Compression | | | | | | | В | Bras | ss fitting | g | | | | Fitting | | | | | | | 1 | 0 | 0 No fitting | | | | | | | | | | | | | 1 G1/2 | | | | | Process Thread | | | | | | | | | 5 | 5 1/2-14 NPT | | | | | Troccoc Timeda | | | | | | | | 8 | 8 M20 x 1.5 | | | | | | | | | | | | | 1 | В | DIN | form B | | | Connection Head | | | | | | | | | ↓ | 1 | PG16 ca | | | Conduit Thread | | | | | | | | | | 1 | S | All | Stainless Steel Probe | Probe Type | | | | | | | | | | | 1 | 0 | No Teflon cap | Taffan Oan | | | | | | | | | | | | 50 | Teflon cap, 50mm
(2.0") | Teflon Cap | | AS6 | M06 | PD | 100 | W | В | 1 | В | 1 | S | 0 | Sample Part Number | | # S6-Series Agency-Certified Probes # Probe configuration guide Consult with the following table to configure your S6-series probe and determine its Minco part number. | S6 | S6 (A7 | TEX/ICEC | Ex cert | tificatio | ns) | | | | | | | Probe Series | |----|--------|----------|------------|-----------|-----------|----------|-----------|----------|----------------|----------------|--|------------------| | 1 | M06 | 6.0mm | m (0.236") | | | | | | | | | | | | M08 | 8.0mm | m (0.315") | | | | | | Probe Diameter | | | | | | M10 | 10.0mm | า (0.394 | 394") | | | | | | Flobe Diameter | | | | | S25 | 6.4mm | า (0.250 | (0.250") | | | | | | | | | | | 1 | PA | Single | Eleme | nt, 100 (| Ohm Pla | atinum, | 0.392 1 | rcr | | | | | | | PD | Single | Eleme | nt, 100 (| Ohm Pla | atinum, | 0.385 | ΓCR, Clas | s B | | | | | | PM | Single | Eleme | nt, 100 (| Ohm Pla | atinum, | 0.385 | ΓCR, Clas | s A | | Element Type | | | | PAPA | Dual E | lement | , 100 Oh | ım Plati | inum, 0. | 392 TC | R | | | Ltomont Typo | | | | PDPD | Dual E | lement | , 100 Oh | ım Plati | inum, 0. | 385 TC | R, Class I | В | | | | | | PMPM | Dual E | lement | , 100 Oh | ım Plati | inum, 0. | 385 TC | R, Class | A | | | | | | 1 | 100 | Stand | ard leng | ths: 10 | 0mm (3 | .9"), 20 | 0mm (7.9 | "), 500n | nm (19.7mm) | Insertion Length | | | | | 1 | W | 3 lead | wires p | er elen | nent, IE | C EN6075 | 51 colors | S | Number of Leads | | | | | | U | 4 lead | wires p | er elen | nent, IE | C EN6075 | 51 color | S | | | | | | | 1 | Х | | fitting | | | | | Compression | | | | | | | B . | | ss fittin | _ | | | | Fitting | | | | | | | 1 | 0 | | fitting | | | | | | | | | | | | 1 | G1/2 | NDT | | | | Process Thread | | | | | | | | 5 | 1/2-14 | | | | | | | | | | | | | 8 | M20 x | | atainlass. | otool nr | ah a | Probe Type | | | | | | | | Ť | _ 5
↓ | 0 | stainless : | flon cap | | Probe Type | | | | | | | | | · | 50 | | | nm (2.0") | Teflon Cap | | | | | | | | | | ↓ | T | PTF | | | | | | | | | | | | | S | | -
Braid over PTFE | | | | | | | | | | | | F | | Jacket | Lead Wire | | | | | | | | | | | R | FEP | Jacket over SS Braid | Insulation | | | | | | | | | | | Е | Elas | tomer-Filled Cable | | | | | | | | | | | | 1 | 1000
↓ | Specify in mm;
standard: 300, 1000,
2000, 3000 | Lead Length | | S6 | M06 | PD | 100 | W | В | 1 | s | 50 | Т | 1000 | Sample Part Number | | # **Compact Plug Sensor** #### Overview The S205459 is a platinum RTD temperature sensor with convenient plug in connection. - Sensor measuring and operating range is from -50 to 300°F (-45.5 to 148.9°C). - Connection is made using an industry-standard Packard/Delphi: Metri-pack 150 connector #### **Specifications** **Temp Range:** -50 to 300°F (-45.5 to 148.9°C) Case Material: 316 Stainless Steel Connector: Packard / Delphi METRI-PACK 150 **Pressure Rating:** Stainless Steel: 1500 psi Brass: 500 psi Insulation Resistance: 1000 megaohms min at 500 V **Vibration:** Withstands 10 to 2000 Hz at 20 G's min per MIL-STD-202, Method 204 Test Condition D Shock: Withstands 100 G's min sine wave shock of 8 milliseconds duration. **Sensor Housing:** Stainless steel sensor end with a choice of NPT threads; end connector (Packard/Delphi: Metri-pack 150) ## Specification and order options | S205459 | Model number:
S205459 Compact Plug Sensor | |-----------|--| | PD | Element Type:
\P PD Platinum (0.00385 TCR) 100 Ω +/- 0.12% at 0°C
\P PF Platinum (0.00385 TCR) 1000 Ω +/- 0.12% at 0°C | | 20 | Case Length: ▼10 =1.0" ▼20 = 2.0" ▼30 = 3.0" ▼40 = 4.0" | | P2 | Thread size:
$\P P2 = \frac{1}{8} - 27 \text{ NPT}$
$\P P4 = \frac{1}{4} - 18 \text{ NPT}$
$\P P6 = \frac{3}{8} - 18 \text{ NPT}$
$\P P8 = \frac{1}{2} - 14 \text{ NPT}$ | | S | Case Material: ▼S = Stainless Steel | | S205459PI | D20P2S = Sample Part Number | Contact Minco to learn more about custom design options for your application. #### **S205459 Mating Cable Assembly** - 72" Shielded cable - 2-conductor, AWG #18, copper braid shield with drain wire - Terminated with a female Metri-pack 150 connector # Specification and order options: S205459 Mating Cable Assembly | AC203350 | Model Number: AC203350 | | | | | |----------------------------------|------------------------|--|--|--|--| | L72 | 72" lead length | | | | | | AC203350L72 = Sample Part Number | | | | | | **▼**= STANDARD OPTIONS # Integrated Sensor/Transmitter The TT363 is an integrated platinum RTD temperature sensor with 4-20mA current loop output. Combines transmitter capability with a platinum sensing element in a single package for an easier-to-install temperature sensing solution. - Power and signal are provided through a 4-20mA current loop connection. - Sensor measuring and operating range is from -50 to 300°F (-45.5 to 148.9°C). - The high-temperature plastic case and electronics can be used in applications with an ambient temperature up to 185°F (85°C). - Connection is made using an industry-standard Packard/Delphi: Metri-pack 150 connector. #### **Specifications** Output: 4-20mA over range specified, linear with temperature. Sensor Operating Temperature: -50 to 300°F (-45.5 to 148.9°C) #### **Ambient Temperature:** Operation: -40 to 185°F (-40 to 85°C), non-condensing Storage: -67 to 212°F (-55 to 100°C), non-condensing Supply Voltage: 7.6 to 35VDC, reverse polarity protected **Loop resistance:** Maximum allowable resistance of the signal-carrying loop, including wires and load resistors given by: Rloopmax = (Vsupply-7.6)/.02Amps Warmup drift: Less than +/-0.025mA; stable within 30 minutes. Ambient temperature error: Less than +/-0.15mA **Voltage Stability:** Change in loop current $< \pm .01$ mA from 7.6 to 35 VDC **Sensor Housing:** Stainless steel sensor case with a choice of NPT threads; transmitter body is nylon with 30% glass plastic encapsulation; end connector (Packard/Delphi: Metri-pack 150) ## Specification and order options | TT363 | Model number:
TT363 Temperature Sensor/Transmitter | |----------|--| | AN | Range Code:
Temperature range code
[AN = -17.8 to 148.9°C(0 to 300°F)] | | 20 | Case Length:
10 = 1.0"
20 = 2.0"
30 = 3.0"
40 = 4.0" | | P2 | Thread size:
$P2 = \frac{1}{8} - 27 \text{ NPT}$
$P4 = \frac{1}{4} - 18 \text{ NPT}$
$P6 = \frac{3}{8} - 18 \text{ NPT}$
$P8 = \frac{1}{2} - 14 \text{ NPT}$ | | S | Case Material:
S = Stainless Steel | | TT363AN2 | 20P2S = Sample Part Number | Contact Minco to learn more about custom design options for your application. ## **TT363 Mating Cable Assembly** - 72" Shielded cable - 2-conductor, AWG #18, copper braid shield with drain wire - Terminated with a female Metri-pack 150 connector # Specification and order options: #### TT363 Mating Cable Assembly | AC203350 | Model Number: AC203350 | |------------|-------------------------| | L72 | 72" lead length | | AC203350L7 | 72 = Sample Part Number | # Conductivity Level Sensor Overview The LT364 Level Sensor provides point fluid detection with virtually any conductive
fluid. Two 316 stainless steel pins provide for operation in mildly corrosive fluids within plastic or metal containers. Fluid presence is measured by passing a low voltage AC signal between the stainless steel probes. The use of an AC voltage eliminates the effects of galvanic corrosion on the probes. Power to the sensor and output from the sensor is derived from a current loop. Sensor output is 8 mA with fluid present and 16 mA with no fluid present. - · No calibration necessary. - Injection molded, high-temperature plastic case. - Electronics can be used in applications with an ambient temperature up to 185°F (85°C). - Connection is made using an industry-standard Packard/Delphi Metri-pack 150 connector providing an easy-to-connect, polarized connection. #### **Application Ideas** - · Radiator low-fluid level detection - · Pump recovery tanks - Fluid leak detection - Parts washers - Automated test equipment ## **Specifications** #### **Sensor Output:** 8 mA \pm 1 mA with fluid present and 16 mA \pm 1 mA with no fluid present #### **Ambient Temperature (electronics):** Operation: -40 to 185°F, non-condensing Storage: -67 to 212°F, non-condensing Supply Voltage: 7.6 to 35VDC, reverse polarity protected **Loop resistance:** Maximum allowable resistance of the signal-carrying loop, including wires and load resistors given by: Rloopmax = (Vsupply-7.6)/.02Amps **Voltage Stability:** Change in loop current $< \pm .01$ mA from 7.6 to 35 VDC Sensor Housing: 3/8 - 18 NPT process thread, nylon with 30% glass plastic encapsulation; end connector is Packard/Delphi Metri-pack 150. Weight: Approximately 2.5 oz (70 g) #### Specification and order options | L015 | Model number: L015 Level Sensor | |------|--| | | lengths are available. Contact Minco to learn
out custom design options for your application. | ### LT364 Mating Cable Assembly - 72" Shielded cable - 2-conductor, AWG #18, copper braid shield with drain wire - Terminated with a female Metri-pack 150 connector # Specification and order options LT364 Mating Cable Assembly | AC203350 | Model Number: AC203350 | | | | | |----------------------------------|------------------------|--|--|--|--| | L72 | 72" lead length | | | | | | AC203350L72 = Sample Part Number | | | | | | **▼**= STANDARD OPTIONS # Conductivity Level Sensor ## **Dimensional Drawings** ### **Side View** ### **Connection End** ### **Measurement End** **▼**= STANDARD OPTIONS # How to Shorten Cut to Length Probes Shorten probes easily with a tubing cutter #### Overview Many probe models can be cut to the required length using an ordinary tubing cutter. Cut-to-length models are marked with the icon shown at right. #### Benefits are: - You can keep standard lengths in inventory, and shorten them as needed for urgent requirements - Stocking and shortening probes, instead of ordering a few pieces at a time, may let you take advantage of quantity discounts - Minco stocks most cut-to-length probes and can trim and ship them within 24 hours of your call The AC101248 probe cutting system makes clean, precise cuts. #### How to shorten probes Remove the PTFE or brass ferrule from the lead exit end of the probe. Mark the proper length, then cut, going slowly to avoid crimping the case or damaging the leads. Use a good quality tubing cutter that is intended to cut stainless steel tubing or conduit. The cutter must have a sharp blade to prevent "rolling in" during cutting of the tubing. Suitable models are available from Imperial Eastman and Sears Industrial. After cutting, discard the hollow tube section, carefully deburr the cut end, and replace the ferrule. You can slit the PTFE ferrule for easier installation. If you use many cut-to-length probes consider the AC101248 probe cutting system. It includes an electric Dremel™ tool (120 VAC @ 60 Hz), flexible shaft, and accessories to allow clean, precise cuts. The system includes a convenient carrying case and comes with easy to follow instructions. # PFA or FEP Encapsulation Tubing # Protect probes from chemical attack #### Overview The tube is sealed at one end and can be easily heat-shrunk onto any probe. Supplied separately. #### Specification and order options | AC100375 | Model number | |-----------|---| | L120 | Length:
120 = 12.0"
240 = 24.0"
Can be cut to any length | | Р | Encapsulation type: P = clear PFA F = clear FEP | | 188 | Probe diameter:
125 = 0.125" (3.2 mm)
188 = 0.188" (4.8 mm)
215 = 0.215" (5.5 mm)
250 = 0.250" (6.4 mm) | | AC100375L | 120P188 = Sample part number | #### **FEP Specifications** **FEP:** Fluorinated Ethylene Propylene **Temperature range:** -70 to 200°C (-94 to 392°F). Maximum temperature 204°C (400°F) Excellent dielectric insulation properties, chemically resistant, unaffected by weather, extreme heat, or cold temperatures. ## **PFA Specifications** PFA: Perfluoroalkoxy **Temperature range:** -70 to 260°C (-94 to 500°F). Maximum temperature 260°C (500°F) Combines attributes of PTFE and FEP, chemically resistant to all common solvents, maintains mechanical strength at high temperatures. # ► SECTION 3: ACCESSORIES - A wide selection of fittings and accessories adapt sensors to any installation - Adjustable fittings with cut-to-length probes provide off-the-shelf versatility - Choose from a variety of materials to meet your critical environment requirements ## **Section 3: Accessories** | Connection heads | 3-2 to 3-3 | |--------------------------|------------| | Spring-loaded holders | 3-4 | | Fluid immersion fittings | 3-5 | | Economy thermowells | 3-6 | | HVAC thermowells | 3-6 | | Reduced tip thermowells | 3-7 | | Tapered thermowells | 3-7 | | Flanged thermowells | 3-8 | | | | | Bayonet fittings | 3-9 | |-------------------------------|--------------| | Extensions | 3-9 | | Metric accessories | 3-10 | | Feedthroughs | 3-11 | | Leadwire and cable seal | 3-12 to 3-13 | | Elastomer rubber-filled cable | 3-14 | | Extension wire | 3-15 | # **Connection Heads** | Dimensions in inches (m | nm) | Material | IP/NEMA
Rating | | Pipe thread codes | Temptran™
models | Approx.
weight | Model | | |---|--------------------------------|---|-----------------------------|------------------|-------------------|---|---|-----------------------|--------| | CH103
3.7 (94) H
3.7 (94) L
1.9 (48) D
2.0 (51) T | H SENSOR THREAD A THREAD B D D | Nickel-plated cast
iron with SS
chain/silicone
gasket | IP55
Type 3
and 4 | 260°C
(500°F) | P1, P2,
P3, P4 | All models
except TT530
and TT531 | 2.0 lbs.
(0.9 kg.) | ▼CH103 | | | CH366
3.5 (89) H
3.4 (86) L
2.0 (51) D
1.8 (46) T | H | White polypropylene
(FDA approved) with
SS chain/neoprene
gasket | IP55
Type 3
and 4 | 120°C
(248°F) | P3, P4 | All models
except TT530
and TT531 | 0.2 lbs.
(0.1 kg.) | ▼CH366 | | | CH359 3.6 (91) H 3.6 (91) L 1.9 (48) D 1.9 (48) T | H SENSOR THREAD | Aluminum with SS chain/silicone gasket | IP55
Type 3
and 4 | 260°C
(500°F) | P1, P2,
P3, P4 | All models
except TT530
and TT531 | 0.8 lbs.
(0.4 kg.) | ▼CH359 | | | CH301
2.33 (59.2) H
4.28 (108.7) L
1.25 (31.8) D
3.6 (91.4) T | H PIPE THREADS (2) | neoprene gasket | IP55
Type 3
and 4 | 115°C
(240°F) | CH301: P3
only | Miniature | 0.5 lbs.
(0.2 kg.) | ▼CH301 | | | CH302
2.60 (66.0) H
5.20 (132) L
1.50 (38.1) D
4.25 (108) T | | | | | CH302: P2
only | TT211 models | | ▼CH302 | | | CH360
3.7 (94) H
3.5 (89) L
1.9 (48) D
1.8 (46) T | H SENSOR THREAD | 316 SS with SS chain/silicone gasket | IP56
Type 3, 4
and 4x | 260°C
(500°F) | P1, P2,
P3, P4 | All models
except TT530
and TT531 | 1.8 lbs.
(0.8 kg.) | ▼CH360 | | | CH335/
CH339 | н — | 300 series SS with
Buna N O-ring | IP56 | 121°C | I PR Only | All models
except TT530
and TT531 | 2.6 lbs.
(1.2 kg.) | ▼CH335 | | | 2.5 (64) Ø
3.5 (89) H
0.95 (20) D | D | 300 series SS with
Buna N O-ring and
SS chain | Type 3, 4
and 4x | (250°F) | | | | ▼CH339 | | | CH514/
CH515/ | H SENSOR THREAD | Copper-free
aluminum/
Fluorosilicone O-ring | IP66
Type 4 | 260°C
(500°F) | | | | ▼CH514 | | | CH516 4.3 (109) L 3.9 (99) H 1.48 (37.6) D 3.09 (78.5) T | | Copper-free
aluminum, powder
coated/
Fluorosilicone O-ring | IP66
Type 4 | IP66
Type 4 | Type 4 | 1 3, 1 7, | All models
except TT530
and TT531 | 1.4 lbs.
(0.6 kg.) | ▼CH515 | | 3.07 (70.3) 1 | В | Stainless steel/
Fluorosilicone O-ring | and 4X | 260°C
(500°F) | | | 3.7 lbs.
(1.7 kg.) | ▼ CH516 | | **▼**= STANDARD OPTIONS # **Connection Heads** | Dimensions in inches (mm) | 1 | | IP/NEMA
Rating | | Approx. weight | Model | | | | | |---|---|---|--------------------------|---------|-----------------------|-------------|--|--|--|--| | Flameproof/Explosionproof/Dust ignition protected heads - ATEX/IECEx/North American Ex approved | | | | | | | | | | | | CH504/CH506: 4.3 (109) L 3.9 (99) H 1.48 (37.6) D 3.09 (78.5) T | Copper-free aluminum/
Fluorosilicone O-ring
Copper-free aluminum, | | IP66
Type 4 | 85°C | 1.4 lbs.
(0.6 kg.) | ▼
CH504 | | | | | | | powder coated/Fluorosilicone O-ring Stainless steel/Fluorosilicone | IIC Gb; Zone 21, Ex/AEx tb
IIIC
Db;
NEC 500/CSA C22.2:
CI I, Div 1&2, Gp B,C,D | IP66
Type 4 and
4X | (185°F) | , ,, | CH504
_P | | | | | | CONDUIT / I D I | | Cl II, Div 1&2, Gp E,F,G
Cl III, Div 1&2 | | | 3.7 lbs.
(1.7 kg.) | ▼
CH506 | | | | | #### Notes: - All Temptran™ transmitter models except TT530 and TT531 may be used with connection heads on this page. - See section 4 for more information # Replacement terminal boards | Model | 6-position
board | 8-position
board | |-------|---------------------|---------------------| | CH103 | AC103029 | AC101926 | | CH301 | AC101377T6 | | | CH302 | AC101377T6 | | | CH335 | AC100427 | AC101926 | | CH339 | AC100427 | AC101926 | | CH359 | AC100427 | AC101926 | | CH360 | AC100427 | AC101926 | | CH366 | AC103029 | AC101926 | | CH504 | | AC229180 | | CH506 | | AC229180 | | CH514 | | AC229180 | | CH515 | | AC229180 | | CH516 | | AC229180 | # Specification and order options | CH504 | Model number from table | 9 | | | | |--|--|----------------------------------|----------------------------------|--|--| | P2 | Pipe thread code:
▼P1 = | Thread A
3/4 - 14 | Thread B | | | | | ▼ P2 = | ³ / ₄ - 14 | ³ / ₄ - 14 | | | | | ▼ P3 = | 1/2 - 14 | 1/2 - 14 | | | | | ▼ P4 = | 1/2 - 14 | _{3/4} - 14 | | | | | $ \nabla$ P5 = (CH5xx only) | 1/2 - 14 | M20 x 1.5 | | | | | ablaP6 = (CH5xx only) | ³ / ₄ - 14 | M20 x 1.5 | | | | Т | Connection type: ▼T = Terminal board for wires AWG 14 or smaller ▼W = Wire nuts for wires AWG 14 to 22 | | | | | | 8 Number of terminal posts or wire nuts: ▼ 0,6*,8 T0: transmitter mounting hardware W0: empty enclosure | | | | | | | P Exterior head finish: P = Powder coated finish (available on CH504 heads only) | | | | | | | CH504P | 2T8P = Sample part numb | er | | | | *T6 or W6 not available for CH5xx connection heads # **Spring Loaded Holders** ### **Exclusive Minco user-friendly design!** Minco's spring-loaded holders provide a quick and simple installation and removal of probe sensors — pull out and twist the knob, insert the probe until it bottoms out, and release the knob. To remove probe, pull out and twist the knob. Spring pressure holds the probe tip in contact with the measuring surface for faster response and more reliable measurements. Many models feature a rubber O-ring that doesn't crimp the probe but prevents oil leakage to 50 psi (3.4 bar) at up to 260°C. High temperature models are usable to 450°C. Nylon versions provide electrical insulation. ### **ALL PARTS STOCKED** Note: Available up to 10 pieces or contact Minco Customer Service | Fluoroelastomer O-ring seal: 50 psi pressure rated fluid seal | | | | | | | | | |--|-------------------------------|--------------------------------|---|--------------------------|---------------------------------------|-----------------------------|----------------------|-----------| | | Body
material | Temperature range | Thread
"CH" | Process
thread | Hex
size | Adder "A"
(Total length) | Probe Ø
inch (mm) | Model | | | 300 series | 40 - 26006 | 3. 1.4 | | 11. " (20 | | 0.188 (4.8) | ▼ FG114-1 | | The same of sa | stainless steel | -40 to 260°C
(-40 to 500°F) | ³ / ₄ - 14
NPT | 1/2 - 14 NPT | 11/8" (29
mm) | 3.6" (91 mm) | 0.215 (5.5) | ▼ FG110-1 | | | Stanness steer | , | | | 111111/ | | 0.250 (6.4) | ▼ FG113-1 | | and the same of th | 316 | 40 . 26006 | 3. 1.4 | | 11. " (20 | | 0.188 (4.8) | FG914 | | Control of the later lat | stainless steel | -40 to 260°C
(-40 to 500°F) | 3 _{/4} - 14 | 1/2 - 14 NPT | 11/8" (29
mm) | 3.6" (91 mm) | 0.215 (5.5) | FG912 | | | Stanness steer | (, | INI | | 111111) | | 0.250 (6.4) | FG911 | | - | | | 2 14 | 1/ ₂ - 14 NPT | 1"(25 ,00,00) | | 0.188 (4.8) | FG314 | | THE RESERVE TO SERVE THE PARTY. | Nylon | -40 to 120°C
(-40 to 248°F) | | | 1" (25 mm)
wrench flats | 3.6" (91 mm) | 0.215 (5.5) | FG310 | | - | | | | | | | 0.250 (6.4) | FG313 | | | | | ¹/ ₂ - 14 NPT | 1 _{/2} - 14 NPT | | 2.6" (66 mm) | 0.125 (3.2) | FG216N | | - | 200 | | | | | | 0.188 (4.8) | FG214N | | District Control | 300 series
stainless steel | -40 to 260°C
(-40 to 500°F) | | | ⁷ / ₈ " (22 mm) | | 0.215 (5.5) | FG210N | | | stairiless steer | (40 to 3001) | | | | | 0.250 (6.4) | FG213N | | | | | | | | | 0.236 (6.0) | FG215N | | | | | | | | 2.8" (71 mm) | 0.125 (3.2) | FG116 | | Company of the Compan | 300 series | -40 to 260°C | None | 1, 27 NDT | 5/8 " (16 mm) | | 0.188 (4.8) | FG112 | | | stainless steel | (-40 to 500°F) | None | 1/8 - Z/ INF I | 9/8 (1011111) | 3.6" (91 mm) | 0.215 (5.5) | FG111 | | | | | | | | | 0.250 (6.4) | FG117 | | | 200 | | | | | | 0.188 (4.8) | FG101072 | | | 300 series stainless steel | -40 to 260°C
(-40 to 500°F) | None | 1/ ₄ - 18 NPT | ⁵ / ₈ " (16 mm) | 1.9" (48 mm) | 0.215 (5.5) | FG101078 | | | stall liess steel | (40 to 300 F) | | | | | 0.250 (6.4) | FG101080 | | High temperature: No pressure rating or fluid seal | | | | | | | | | |---|--------------------------------|------------------------------------|--------------|--------------|--------------|----------------|-------------|--------| | Body Temperature Thread Process Hex Adder "A" Probe Ø N | | | | Model | | | | | | | material | range | "CH" | thread | size | (Total length) | inch (mm) | | | COMPANY CONTRA | 200 | | | | | | 0.188 (4.8) | ▼FG801 | | stair | stainless stool | series -40 to 450°C (-40 to 842°F) | 1/2 - 14 NPT | 1/2 - 14 NPT | 7/8" (22 mm) | 2.3" (58 mm) | 0.215 (5.5) | ▼FG802 | | (Set screw installation) | stainless steel (-40 to 642 F) | | | | | 0.250 (6.4) | ▼FG810 | | **▼**= STANDARD OPTIONS # Fluid Immersion Fittings #### Overview Install probes directly into fluid streams and pressure vessels. Simply position the fitting on the probe and tighten the sealing nut. Fluid seal fittings are best for moderate temperatures and pressures. Pressure fittings, constructed of stainless steel, can withstand corrosive media and greater extremes of pressure and temperature. Be sure to check the pressure ratings of probes intended for direct immersion. | Fluid seal fittings to 260°C | Fluid seal fittings to 260°C (500°F) | | | | | | | |------------------------------|--------------------------------------|--------------|--------------------------|-----------------------------|----------------------|----------------|--| | | Body material | Thread "CH" | Process thread | Adder "A"
(Total length) | Probe Ø
inch (mm) | Model | | | | | None | 1/8 - 27 NPT | | 0.188 (4.8) | ▼FG143 | | | | Brass | None | 1/ ₄ - 18 NPT | 1.2" min.
(31 mm) | | ▼FG140 | | | No. of Concession, | | None | 1/8 - 27 NPT | | 0.215 (5.5) | ▼FG126 | | | - Transmit | | None | 1/ ₄ - 18 NPT | | | ▼FG120 | | | | | None | 1/8 - 27 NPT | | 0.250 (6.4) | ▼FG151 | | | | | None | 1/ ₄ - 18 NPT | | | ▼FG130 | | | | | | | 2.4" (61 mm) | 0.188 (4.8) | ▼FG142 | | | | Stainless steel | 1/2 - 14 NPT | 1/2 - 14 NPT | | 0.215 (5.5) | ▼FG122 | | | - Continue | | | | | 0.250 (6.4) | ▼ FG132 | | Note: Fluid seal fittings are rated to 200 psi (17 bar) when using the repositionable silicone rubber O-ring. They are rated to 500 psi (34 bar) when using the non-repositionable compression ring. These fittings come with both the O-ring and the compression ring. | Pressure fittings to 871°C (1600°F) | | | | | | | |-------------------------------------|------------------------|--------------|--------------------------|-----------------------------|-------------|-----------| | | Body material | Thread "CH" | Process thread | Adder "A"
(Total length) | | Model | | | | None | 1/8 - 27 NPT | | | FG141T3P2 | | | | None | 1/ ₄ - 18 NPT | 1.5" min.
(39 mm) | | FG141T3P4 | | all man |
316
stainless steel | None | 1/2 - 14 NPT | | | FG141T3P8 | | | | None | 1/8 - 27 NPT | | 0.250 (6.4) | FG141T4P2 | | | | None | 1/ ₄ - 18 NPT | | | FG141T4P4 | | | | None | 1/2 - 14 NPT | | | FG141T4P8 | | | | | | | 0.125 (3.2) | FG145T2 | | | | 1/2 - 14 NPT | 1/2 - 14 NPT | 2.9"
(74 mm) | 0.188 (4.8) | FG145T3 | | | | | | | 0.250 (6.4) | FG145T4 | Note: Pressure fittings are rated to 1500 psi (103 bar) at 25° C/77°F, reducing to 500 psi (34 bar) at 630° C/1166°F. The probe cannot be repositioned after installation. To determine the ideal probe length add the insertion depth to the adder A for the fitting you will use. **▼= STANDARD OPTIONS**Specifications subject to change # **Economy and HVAC Thermowells** #### Overview Thermowells protect probes from pressure, flow, and corrosion. The models on this page have integral fittings for probe and connection head mounting. Immerse the thermowell at least 2.5" (65 mm) for accurate readings. The well should extend beyond the center of the fluid stream without touching the opposite wall. Installation in an elbow or tee may be necessary for sufficient immersion in small pipes. For fastest time response, Minco can furnish thermowells with heat sink compound in the tip. This eliminates the air gap between the probe and inside wall of the well and can reduce time constant by as much as 50%. Order AC101750. #### **Economy thermowell specifications** Models: TW204 / TW201 / TW203 Probes: use with tip-sensitive probes on pages 2-2 to 2-3 Body material: 300 series stainless steel, nickel-plated brass sealing nut with brass compression ring Temperature limit: 260°C (500°F) Pressure rating: 1000 psi (69.9) bar Hex size: 7/8" (22 mm) Standard U dimension: 0.1" increments to 48" | Probe
diameter | Thread
"CH" | Process
Thread | Model | |-------------------|----------------|-------------------|-------| | 0.188" (4.8 mm) | | | TW204 | | 0.215" (5.5 mm) | ½-14 NPT | ½-14 NPT | TW201 | | 0.250" (6.4 mm) | | | TW203 | ### **HVAC** thermowell specifications Model: TW488 Probes: use with HVAC probes on page 8-19 Body material: 316 stainless steel, nickel-plated brass sealing nut with silicone rubber O-ring Temperature limit: 260°C (500°F) Pressure rating: 1880 psi (129.7) bar Hex size: 7/8" (22 mm) #### Standard U dimension: 3.0, 6.0, 12.0, and 18.0". Other lengths are available. | Probe diameter | | Process
Thread | Model | |--|----------|-------------------|-------| | 0.250" (6.4 mm)
Tip 0.188" (4.8 mm) | ½-14 NPT | ¹/₂-14 NPT | TW488 | ### Specification and order options | TW203 | Model number | | | |-------------------------------|--|--|--| | U | | | | | 60 | Thermowell length U:
Specify in 0.1" increments (Ex: 60 = 6.0 inches) | | | | TW203U60 = Sample part number | | | | **▼**= STANDARD OPTIONS # Reduced Tip and Tapered Thermowells Reduced Tip Thermowell #### Overview Protect probes from pressure, flow, and corrosive fluids. Thermowells on this page are machined from solid bar stock. Specify reduced tip style for fast response, tapered style for maximum rigidity in high flow conditions. Immerse the thermowell at least 2.5" (65 mm) for accurate readings. The well should extend beyond the center of the fluid stream without touching the opposite wall. Installation in an elbow or tee may be necessary for sufficient immersion in small pipes. Spring-loaded probe installation is recommended, using either spring-loaded holders or bayonet-mount probes. 0.250" diameter probes provide the best fit. For fastest time response, Minco can furnish thermowells with heat sink compound in the tip. This eliminates the air gap between the probe and inside wall of the well and can reduce time constant by as much as 50%. Order AC101750. Contact Minco Sales and Customer Service for other thermowell styles and materials. ## Reduced tip thermowell specifications #### **Temperature limit:** Stainless steel: 900°C (1650°F). Monel: 538°C (1000°F). **Standard U dimensions:** 2.5, 4.5, 6.0, 7.5, 8.0, 10.5, 13.5, 16.5, and 22.5". Other dimensions available. | Body material | Process thread (NPT) | | | | | |---------------------|----------------------|----------------------|----------------|--|--| | | 1/2 - 14 | ³/ ₄ - 14 | 1 - 11 ½ | | | | 304 stainless steel | TW239 | TW228 | TW238 | | | | 316 stainless steel | ▼TW222 | ▼TW248 | TW234 | | | | Monel | TW1204 | TW447 | TW1231 | | | | Diameter Q | 0.625" (16 mm) | 0.750" (19 mm) | 0.875" (22 mm) | | | | Hex size | 1.125" (29 mm) | 1.375" (35 mm) | | | | Tapered Thermowell #### **Tapered thermowell specifications** #### **Temperature limit:** Stainless steel: 900°C (1650°F). **Standard U dimensions:** 2.5, 4.5, 6.0, 7.5, 8.0, 10.5, 13.5, 16.5, and 22.5". Other dimensions available. | Body material | Process thread (NPT) | | | |---------------------|----------------------|----------------|--| | | 3/4 - 14 | 1 - 11 ½ | | | 304 stainless steel | TW477 | TW252 | | | 316 stainless steel | ▼TW1218 | ▼TW1237 | | | Diameter Q | 0.875" (22 mm) | 1.06" (27 mm) | | | Hex size | 1.125" (29 mm) | 1.375" (35 mm) | | ### **Pressure ratings** | Body material | Temperature | e | | |---------------------|---------------------|---------------------|----------------| | | 21°C (70°F) | 538°C (1000°F) | 650°C (1200°F) | | 304 stainless steel | 7000 psi | 4500 psi | 1650 psi | | | 483 bar | 310 bar | 114 bar | | 316 stainless steel | 7000 psi | 5100 psi | 2500 psi | | | 483 bar | 352 bar | 172 bar | | Monel | 6500 psi
448 bar | 1500 psi
103 bar | | ### Specification and order options | | TW222 | Model number from table | | | | | | |---|-------------------------------|---|--|--|--|--|--| | U | | | | | | | | | | 45 | Thermowell length U:
Specify in 0.1" increments (Ex: 45 = 4.5 inches)
▼: 25, 45, 60 | | | | | | | l | TW222U45 = Sample part number | | | | | | | **▼**= STANDARD OPTIONS # Flanged Thermowells #### Overview Flanged thermowells are available in three standard flange sizes: 1.0", 1.5", and 2.0" per ANSI B16.5. Specify U dimension and pressure rating. Immerse the thermowell at least 2.5" (65 mm) for accurate readings. The well should extend beyond the center of the fluid stream without touching the opposite wall. Installation in an elbow or tee may be necessary for sufficient immersion in small pipes. #### TW1219 Flanged Straight Thermowell #### TW1220 Flanged Tapered Thermowell ## Specifications - Models TW1219 / TW1220 Body material: 316 stainless steel. Temperature limit: 607°C (1125°F). **Pressure rating:** Specify flange pressure rating. (1 bar = 14.5 psi). | Pressure rating | Dimension A | |------------------------|--------------| | 150, 300, 400, 600 psi | 2.25" (64mm) | | 900, 1500, 2500 psi | 3.25" (83mm) | Thread: ½-14 NPT internal thread. Probe diameter: 0.250" (6.4 mm). Standard U dimensions: 2.5, 4.5, 6.0, 7.5, 8.0, 10.5, 13.5, 16.5, and 22.5". Other dimensions available. # Specification and order options: | TW1219 | Model number:
TW1219 = Straight
TW1220 = Tapered | |---------|--| | U | | | 105 | Thermowell length U:
Specify in 0.1" increments (Ex: 105 = 10.5 inches) | | S | | | 10 | Flange size:
10 = 1.0"
15 = 1.5"
20 = 2.0" | | F | | | 300 | Pressure rating in pounds per square inch | | RF | Flange type: RF = Raised face RTJ = Ring type joint | | TW1219l | J105S10F300RF = Sample part number | **▼**= STANDARD OPTIONS # Bayonet Fittings, Extensions # Bayonet adapter style Bayonet fittings are for spring-loaded installation of probes Note: Available up to 10 pieces or contact Minco Customer Service equipped with springs and lockcaps. Insert the probe, hook the lockcap over the pin on the fitting, and release. | Bayonet adapter style | Body material | Thread "CH" | Process thread | Hex size | Adder "A" | Probe diameter | Model | |-----------------------|---------------------|-------------|----------------|------------|-------------------|-----------------|----------| | == | 303 stainless steel | None | 1/8 - 27 NPT | None | 1.2" min. (31 mm) | 0.188" (4.8 mm) | ▼FG180 | | T | 316 stainless steel | ⅓ - 14 NPT | ⅓ - 14 NPT | ⅓" (22 mm) | 2.4" (61 mm) | 0.188" (4.8 mm) | ▼FG144T3 | Note: Temperature limit: 871°C (1600°F) # Extension nipples, couplings, unions Extensions in assemblies serve to isolate connection heads from process connections in order to clear pipe insulation or limit heat conduction into the head. Choose from galvanized or stainless steel nipples, couplings, and unions. Nipples are short lengths of pipe to extend connection heads away from processes. Couplings and unions have two $\frac{1}{2}$ -14 NPT female threads to join nipples to other fittings. Unions allow installation without rotating the connection head. | Style | Length | Galvanized steel to 260°C (500°F) | Stainless steel to 871°C (1600°F) |
--|------------------------|--|-------------------------------------| | | 1.2" (34 mm) | FG563
Adder C: 0.2" (5mm) | FG537
Adder C: 0.2" (5mm) | | AND THE PERSON NAMED IN COLUMN | 2.0" (51 mm) | ▼ FG556L20
Adder C: 1.0" (25mm) | ▼ FG579L20
Adder C: 1.0" (25mm) | | Ningle | 3.0" (76 mm) | ▼ FG556L30
Adder C: 2.0" (51mm) | ▼ FG579L30
Adder C: 2.0" (51mm) | | Nipple | 4.0" (102 mm) | ▼ FG556L40
Adder C: 3.0" (76mm) | ▼ FG579L40
Adder C: 3.0" (76mm) | | | 6.0" (152 mm) | ▼ FG556L60
Adder C: 5.0" (127mm) | ▼ FG579L60
Adder C: 5.0" (127mm) | | Coupling | Same as Adder B length | ▼ FG602
Adder B: 1.7" (43mm) | ▼ FG854
Adder B: 1.4" (36mm) | | Union | Same as Adder B length | ▼ FG709 (no fluid seal)
Adder B: 1.9" (48 mm) | ▼ FG714
Adder B: 1.6" (41 mm) | Note: All threads are $\frac{1}{2}$ -14 NPT [2]. **▼**= STANDARD OPTIONS # Metric Accessories #### Overview Metric fittings and thermowells help you design your equipment to meet global standards. Use these fittings to install Minco sensors in process lines, rotating machinery, and all types of industrial equipment. Special threads and accessories are available. See Eurostyle Sensors Assemblies on page 1-22. Fluid seal spring-loaded holders: Spring-loaded holders provide fast installation and simple adjustment or removal of probes. Minco's unique designs work with straight probes and provide sealing for the typical oil pressures found in rotating machines. **Fluid seal fittings:** Fluid seal fittings are a low cost solution where a connection head is not required. **Bayonet adapters:** Bayonet adapters work with Minco's spring-loaded bayonet fitted probes. Adapter bushings: Adapter bushings allow fitting $\frac{1}{2}$ - 14 NPT fittings into metric threaded process connections. **Thermowells:** Thermowells provide high-pressure protection and allow probe replacement without opening the system. | | Body material | Temp.
limit | Pressure rating | Thread
"CH" | Process
thread | Hex
size | Probe
diameter | Model | |--|---|-------------------|--|------------------------|--|--------------------------------|--------------------|------------| | Crim | 303 series | | 3.4 bar
(50 psi) | ³⁄4 - 14 NPT | G ½
ISO ²²⁸ / ₁
parallel | 1 1/16" | 0.188"
(4.8 mm) | MFG812P477 | | The state of s | stainless steel
per
DIN 1.4300, | 260°C
(500°F) | | | | (27 mm) | 0.215"
(5.5 mm) | MFG812P546 | | Fluid seal spring-loaded holder
Probe length adder A: 3.6" (91mm) | AISI 303 | | | | paraner | | 0.250"
(6.4 mm) | MFG812P635 | | Fluid seal fitting Probe length adder A: 1.1" min. (28 mm) | Brass | 260°C
(500°F) | Silicone rubber
O-ring: 17.2 bar
(250 psi)
Brass compression
ring: 34.5 bar
(500 psi) | None | R ¼
ISO ¾
tapered | % ₁₆ "
(14 mm) | 0.250"
(6.4 mm) | MFG816 | | Bayonet adapter
Probe length adder A: 1.2" (31 mm) | 303 series
stainless steel
per
DIN 1.4300,
AISI 303 | 871°C
(1600°F) | No fluid seal | None | R 1/8
ISO 7/1
tapered | None | 0.188"
(4.8 mm) | MFG817 | | Adapter bushing Probe length adder A: 1.2" (31 mm) | 303 series
stainless steel
per
DIN 1.4300,
AISI 303 | 871°C
(1600°F) | No fluid seal | ½ - 14 NPT
(Female) | G ½
ISO ²²⁸ / ₁
parallel | 1 ½6"
(27 mm) | All | ▼ MFG811 | | Ø .375" (9.5 mm) Thermowell Probe length = U + 30 mm + fitting adder A (U= 13 mm min./1200 mm max.) | 303 series
stainless steel
per
DIN 1.4300,
AISI 303 | 871°C
(1600°F) | 190 bar (2755 psi)
at 25°C, reducing
to 34 bar (493 psi)
at 600°C | ½ - 14 NPT
(Female) | G ½
ISO ²²⁸ / ₁
parallel | 1 ½ ₁₆ "
(27 mm) | 0.250"
(6.4 mm) | MTW1208 | ## Thermowell specification and order options | MTW1208 | Model number | | | | | | | |---|--------------|--|--|--|--|--|--| | U | | | | | | | | | Thermowell length U: Specify in millimeters Minimum: 13 mm Maximum: 1200 mm | | | | | | | | | MTW1208U100 = Sample part number | | | | | | | | **▼**= STANDARD OPTIONS # Feedthroughs Prevent Oil Seepage #### Overview Feedthroughs provide an oil-tight-seal where a cable exits a machine housing. The stainless steel tube is epoxy filled and each wire is sealed to the individual conductor. This prevents wicking of oil inside the wires as well as leakage around the wire insulation. The pressure rating to 25 psi (1.7 bar) is suitable for most oil and coolant pump systems. Feedthroughs can be ordered as an accessory to any sensor in this guide. When ordering feedthroughs with case style B bearing sensors, the spring and retaining ring are automatically included. Fluid seal fittings allow easy installation of feedthroughs into standard NPT threaded machine housings. See page 3-4, 3-5 or 3-10 (metric) for fluid seal fittings, or page 3-12 for transitions through housings. ## **Specifications** Material: Stainless steel with epoxy potting. Temperature limit: 149°C (300°F). Pressure limit: 25 psi (1.7 bar). | Sheath Ø | Max. Cable Ø | Model | |-----------------|----------------|-------| | 0.188" (4.8 mm) | 0.12" (3.0 mm) | AC958 | | 0.215" (5.5 mm) | 0.14" (3.6 mm) | AC717 | | 0.250" (6.4 mm) | 0.17" (4.3 mm) | AC718 | | 0.375" (9.5 mm) | 0.26" (6.6 mm) | AC961 | ## Specification and order options | AC717 | Model number from table | | | | | | | |---------|--|--|--|--|--|--|--| | B6 | Lead length B or C in inches (specify one): B = Lead end C = Sensor end | | | | | | | | D250 | Feedthrough length D in
0.01" increments:
Min. length: 1.6" (40.6 mm) (Ex: 250 = 2.50") | | | | | | | | AC717B6 | AC717B6D250 = Sample part number | | | | | | | **▼**= STANDARD OPTIONS # FG Series Cable Seals #### Prevent oil wicking with bearing embedment sensors #### Overview Minco's FG series cable seals prevent oil wicking with bearing embedment sensors in rotating equipment. They were specifically designed for use with Minco's innovative elastomer filled cables to prevent oil wicking along the sensor cable. FG series seals can also be used to seal around individual leadwires and rigid tubing. The seals include a grommet that provides a tight seal and also allows adjustment of the cable or leadwire position. #### **Configurations** FG series cable seals are available in three configurations, all of which perform the same basic function of providing an adjustable, oil-tight seal on Minco elastomer filled cables, leadwires, rigid probes or feed-through tubing. #### Installation The split grommet fits over the cable where access to the cable ends isn't practical. The feed-through grommet requires the cables to be threaded through the grommet. Tightening the fitting compresses the grommet, forming the seal. To adjust the position of the cables in the seal, simply loosen the fitting to decompress the grommet and pull the wire or cable through the grommet to the desired position and retighten the fitting. #### Note: - Plugs are provided to fill unused holes on 6-hole and split grommets. - Insulated leadwires must be used; do not use bare stranded leadwires. - Wires must be oil sealed on sensor end. ### **Specifications** | Fitting material | Stainless steel (303 or 316) | |--------------------|--| | Grommet material | Fluoroelastomer or Neoprene | | Temperature range | Fluoroelastomer: | | (grommet) | -40 to 90°C (-40 to 194°F) | | | Neoprene: -40 to 75°C (-40 to 167°F) | | Pressure | 50 psi (3.4 bar) at 20°C | | Ingress protection | IP65/IP66 | | rating* | | | ATEX and IECEx | ATEX $\langle \mathcal{E}_{\mathbf{X}} \rangle$ II 2 G Ex d e llc Gb | | certification* | IECEx Ex d e llc Gb | | | | ^{*}FG4014 and FG4015 only **▼**= STANDARD OPTIONS # FG Series Cable Seals ## **Ordering Information** FG products can be ordered as complete assemblies or as piece parts (fitting body and grommet kit separately). #### **Cable Seal Assemblies** To configure your assembly, select from the options listed below to determine the complete assembly part number. Use the code shown in **bold** for each selection. Assemblies include fitting body, grommet and compression plugs, and washer (1015). | FG1015 | Model number: ▼FG1015: Cable seal assembly (feed-through grommet) ▼FG3015: Cable seal assembly (split grommet) ▼FG4015: Cable seal assembly (feed-through grommet, certified) ▼FG4015: Cable seal assembly (feed-through grommet, certified - add S to end of part number for certified version) | | | | | | | | | | |--------------------------------------|--|-------------------------------------|---------------|--------------|---------------|------------------|----------------------|--|--|--| | P1 | | ipe thread code: | | | | | | | | | | | Code | Conne
thread | ction | Proo
thre | | Overal
length | | | | | | | ▼ P1 | 1/2" 14 | NPT | 3/4" | 14 NPT | 3.25" | 1-1/8" | | | | | | ▼ P2 | 3/4" 14 | NPT | | | | | | | | | | ▼ P3 | 1/2" 14 | NPT | 1/2" | 14 NPT | | | | | | | | ▼ P4 | 3/4" 14 | NPT | | | | | | | | | | P5 | NONE | | 1/2" | 14 NPT | 2.50" | | | | | | | P6 | | | 3/4" | 14 NPT | | | | | | | | P7 | 1/2" 14 | NPT | 1/2" | 14 NPT | 3.25" | | | | | | | P8 | (FEMAI | LE) | 3/4" | 14 NPT | | | | | | | | P9 | 3/4" 14
(FEMAI | | 3/4" | 14 NPT | 3.35" | 1-3/8" | | | | | SS | ▼SS | g materia
= Stainle
Stainless | ss steel | | | | | | | | | 1V130 | Grom | met hole | quanti | ty, m | aterial and | l size: | | | | | | | Hole | Material | | | | | Cable/ | | | | | | qty. | Neo-
prene | Fluoro | | | | conductor Ø
range | | | | | | | 1015,
4015 | 1015,
4015 | | 3015 | , and the second | | | | | | | 1 | | ▼1V 1 | 30 | | 0.130" | 0.100" to 0.130" | | | | | | | | ▼1V 1 | 60 | 1V160 | 0.160" | 0.130" to 0.160" | | | | | | | | ▼1V2 | 220 | 1V220 | 0.220" | 0.190" to 0.220" | | | | | | 2 | 2N130 | ▼2V 1 | 30 | | 0.130" | 0.100" to 0.130" | | | | | | | 2N160 | ▼2V 1 | 60 | | 0.160" | 0.130" to 0.160" | | | | | | | 2N190 | 2V1 | 90 | | 0.190" | 0.160" to 0.190" | | | | | | | 2N220 | 2V2 | 20 | 2V220 | 0.220" | 0.190" to 0.220" | | | | | | 3 | 3N130 | 3V1 | 30 | | 0.130" | 0.100" to 0.130" | | | | | | | | 3V1 | 60 | | 0.160" | 0.130" to 0.160" | | | | | | | 3N190 | 3V1 | 90 | ▼3V190 | 0.190" | 0.160" to 0.190" | | | | | | 4 | | | | ▼4V100 | 0.100" | 0.080' to 0.100" | | | | | | | | ▼4V 1 | 30 | ▼4V130 | 0.130" | 0.100" to 0.130" | | | | | | | | ▼4V 1 | 60 | ▼4V160 | 0.160" | 0.130" to 0.160" | | | | | | 6 | 6N050 | ▼ 6V0 |)50 | ▼6V050 | 0.050" | 0.030" to 0.050" | | | | | FG1015P1SS1V130 = Sample part number | | | | | | | | | | | ## Fitting Body/Cap Only To configure your fitting body/cap, select from the options listed below to determine the complete part number. Use the code shown in **bold** for each selection. Fitting bodies do not include grommet and compression plugs, and washer. | FG1014 | Model number: FG1014: Cable seal fitting body only FG4014: Cable seal fitting body only (ATEX) | | | | | | | | | |---------|--|-------------------------|-------------------|----------------|---------------------|--|--|--|--| | P1 | Pipe thread code: | | | | | | | | | | | Code | Connection thread | Process
thread | Overall length | Connection hex size | | | | | | | P1 | 1/2" 14 NPT | 3/4" 14 NPT | 3.25" | 1-1/8" | | | | | | | P2 | 3/4" 14 NPT | | | | | | | | | | Р3 | 1/2" 14 NPT | 1/2" 14 NPT | | | | | | | | | P4 | 3/4" 14 NPT | | | | | | | | | | P5 | NONE | 1/2" 14 NPT | 2.50" | | | | | | | | P6 | | 3/4" 14 NPT | | | | | | | | | P7 | 1/2" 14 NPT | 1/2" 14 NPT | 3.25" | | | | | | | | P8 | (FEMALE) | 3/4" 14 NPT | | | | | | | | | P9 | 3/4" 14 NPT
(FEMALE) | 3/4" 14 NPT | 3.35" | 1-3/8" | | | | | | SS | Fitting material: SS = Stainless steel, type 303 ST = Stainless steel, type 316 | | | | | | | | | | FG1014P | 1SS = S | ample part nu | mber | | | | | | | #### **Grommet Kits** To configure your grommet kit, select from the options listed below to determine the complete part number. Use the code shown in **bold** for each selection. Kits include grommet and compression plugs, and washer (1015). | AC1015 | Kit type: AC1015 = Feed-through grommet AC3015 = Split grommet design AC4015 = Feed-through grommet, certified AC4015 = Split grommet design, certified (add S to end of part number to receive split grommet version) | | | | | | |--|--|---------------|----------------------|----------|--------------|------------------| | H1V130 | Grom | met hole | quantity | , materi | al and size: | | | | Hole | Material | | | Grommet | Cable/conductor | | | qty. | Neo-
prene | Fluoro-
elastomer | | hole Ø | Ø range | | | | 1015,
4015 | 1015,
4015 | 3015 | | | | | H1 | | 1V130 | | 0.130" | 0.100" to 0.130" | | | | | 1V160 | 1V160 | 0.160" | 0.130" to 0.160" | | | | | 1V220 | 1V220 | 0.220" | 0.190" to 0.220" | | | H2 | 2N130 | 2V130 | | 0.130" | 0.100" to 0.130" | | | | 2N160 | 2V160 | | 0.160" | 0.130" to 0.160" | | | | 2N190 | 2V190 | | 0.190" | 0.160" to 0.190" | | | | 2N220 | 2V220 | 2V220 | 0.220" | 0.190" to 0.220" | | | H3 | 3N130 | 3V130 | | 0.130" | 0.100" to 0.130" | | | | | 3V160 | | 0.160" | 0.130" to 0.160" | | | | 3N190 | 3V190 | 3V190 | 0.190" | 0.160" to 0.190" | | | H4 | | | 4V100 | 0.100" | 0.080' to 0.100" | | | | | 4V130 | 4V130 | 0.130" | 0.100" to 0.130" | | | | | 4V160 | 4V160 | 0.160" | 0.130" to 0.160" | | | H6 | 6N050 | 6V050 | 6V050 | 0.050" | 0.030" to 0.050" | | AC1015H1V130 = Sample part number ▼= STANDARD OPTIONS | | | | | | | Note: Order the 6-hole version to seal around PTFE-insulated wires. # Sealed Elastomer Rubber Filled Cable to Prevent Oil Seepage 24 30 30 26 - 28 #### Overview Model AC100324 is a sensor cable with elastomer fill between the wires, stainless steel braid, and outer jacket. This fill can extend along the entire length of the cable, or a specified portion. Seal the outside of the cable with an FG1015, FG3015 or FG4015 leadwire and cable seal fitting. See page 3-12 for more information. While the AC100324 provides a good seal, a minuscule amount of oil may escape inside the individual wires. ## **Specifications** Temperature range: -50° C to 125°C (-58°F to 257°F). **Tolerance on lead length:** +1/-0" (+25/-0mm) for lead lengths 24" or less; +5/-0% for lead length greater than 24". **B length:** Cable is filled starting at leadwire end of cable. Tubing ends at B length; stainless steel braid extends to case. C length: Cable is filled starting 2" from case. If J length is specified, stainless steel braid extends to lead end. J length: Unfilled FEP extension length. # Using the AC100324 with FG1015/FG3015/FG4015 oil seal fittings When selecting the FG1015, FG3015 or FG4015 for use with silicone filled cable use the grommet hole size from the tables. | Number of | Case | Grommet hole ø | | |
-----------|-------|----------------|------|--| | sensing | style | Leads/RTD | | | | elements | | 2 | 3 | | | 1 | А | .130 | .160 | | | | В | .130 | .160 | | | | С | .130 | .130 | | | | D | .100 | .100 | | | 2 | А | .160 | .190 | | | | В | .130 | .130 | | | | С | .100 | .130 | | Learn more about FG1015, FG3015 or FG4015 leadwire and cable seal fittings on page 3-12. 0.190 0.130 0.100 0.130 Specify elastomer filled cables directly in miniature sensor part numbers on pages 6-2 to 6-9 or add to any sensor as part of an assembly. 2, 3, 4, and 6 2, 3, and 4 6 #### Specification and order options | AC100324 | Model number | | | | |--|--|--|--|--| | B24 | Elastomer filled length B or C in inches | | | | | | (if not specified, entire length will be filled) B = Lead end C = Sensor end (Max fill length = 240") | | | | | To order standard filled cable, stop here. | | | | | | To order an optional jacket extension add: | | | | | | J | Jacket extension | | | | | AC100324B24J = Sample part number | | | | | Note: The sensor model number dictates all specifications other than the elastomer filled length B or C and optional extension J. You must specify sensor model including SS braid covering over the leadwires when ordering. Some sensor models do not include the option for SS braid lead covering; contact Minco for assistance with these sensors. # **Extension Wire** ### Overview Use extension wire and cable to connect sensor leadwires to remote instrumentation. Unless informed otherwise, wire and cable will be supplied in continuous lengths. Ends are not stripped. ### Wire for RTDs Choose single conductor copper wire or cable. | Description | Temperature Color | | Model number for AWG | | |--|-------------------|--|----------------------|--------| | | Limit | | 22 | 26 | | | | White | WS122W | WS126W | | Single conductor wire, stranded | 260°C (500°F) | Red | WS122R | WS126R | | PTFE insulation | 200 C (300 T) | Blue | WS122B | WS126B | | | | Yellow | WS122Y | WS126Y | | Single conductor wire, stranded, | 550°C (1022°F) | White | WS222W | | | mica/glass insulation | 550 C (1022 F) | Red tracer | WS222R | | | 3 conductor cable, PTFE insulation, stainless steel braid over all | 260°C (500°F) | Red/White/
White | WS322S | WS326S | | 6 conductor cable, PTFE insulation,
stainless steel braid over all | 260°C (500°F) | Red/White/
White/Blue/
Yellow/Yellow | | WS426S | | 3 conductor cable, PTFE insulation, copper shield and PTFE jacket over all | 260°C (500°F) | Red/White/
White | WS522T | | ## Specification and order options | WS122R | Model number from table | | | |-------------------------------|-------------------------|--|--| | 10 | Length in feet | | | | WS122R10 = Sample part number | | | | ## **Single Pair Thermocouple Cable** All thermocouple wire meets standard limits of error per NBS (NIST) Monograph 175, based on ITS-90. | Description | ' | Model number for AWG | | |--|---------------|----------------------|--------| | | Limit | 20 | 24 | | Single pair thermocouple cable, glass braid insulation | 482°C (900°F) | WT120G | WT124G | | Single pair thermocouple cable, PTFE insulation | 260°C (500°F) | WT120T | WT124T | | Single pair thermocouple cable, glass braid insulation with stainless steel braid over all | 482°C (900°F) | WT120S | WT124S | ## **Specification and order options** | WT120S | Model number from table | | |--------------------------------|-------------------------|--| | J | Junction type: | | | | E, J, K, or T | | | 25 | Length in feet | | | WT120SJ25 = Sample part number | | | **▼**= STANDARD OPTIONS # ► SECTION 4: INSTRUMENTS - RTD and thermocouple Temptran™ transmitters provide accurate signals over thousands of feet. - Fixed range, dip switch field rangeable or programmable - 4-20mA output or HART® protocol - Miniature, hockey puck, DIN rail and isolated versions - High-accuracy calibration available matched to individual RTDs - Controllers, indicators and alarms for precise monitoring and control #### **Section 4: Instruments** | RTD transmitters4-2 to 4-5, 4-8 to | 4-9, 4-12 to 4-13 | |--|-------------------| | Thermocouple transmitters4-6 to 4-7, 4-10 to 4 | -11, 4-14 to 4-15 | | Programmable transmitters | 4-8 to 4-11 | | Field rangeable transmitters | 4-12 to 4-15 | | Programmable transmitters | 4-16 to 4-17 | | HART® transmitters | 4-18 to 4-19 | | Temperature range table | 4-20 to 4-21 | | High accuracy calibration | 4-22 | | Mounting accessories | 4-22 | | Loop-powered indicators | 4-23 to 4-24 | | CT224 12-channel monitor | 4-25 to 4-26 | |---|--------------| | CT424 Temperature Alarm/Monitor | 4-27 to 4-28 | | CT325 miniature DC temperature controller | 4-29 to 4-30 | | CT335 PC board mount temperature controller | 4-31 to 4-32 | | CT435 PC board mount temperature controller | 4-33 to 4-34 | | CT15 controller/alarm | 4-35 to 4-36 | | CT16 temperature controller | 4-37 to 4-38 | | CT15/CT16A accessories | 4-39 | | CT425 Temperature controller | 4-40 to 4-41 | | | | # Miniature Temptran™ RTD Transmitters #### Overview • Two models: TT111: UL-recognized component for Canada and United States TT211: Wider ambient rating; no agency approvals Optional high-accuracy calibration to Minco RTDs for improved accuracy; see next page and page 4-22 for more information. #### **Specifications** Output: 4 to 20 mA over specified range, linear with temperature. Calibration accuracy: $\pm 0.1\%$ of span. Linearity: Referenced to actual sensor temperature. Platinum RTD input: ±0.1% of span. Nickel and nickel-iron RTD input: ±0.25% of span for spans less than 100°C. $\pm 0.25\%$ of span per 100°C of span for spans greater than 100°C. Adjustments: Zero and span, ±5% of span. Factory set. #### Ambient temperature: TT111: 0 to 50°C (32 to 122°F). TT211: -25 to 85°C (-13 to 185°F). Storage: -55 to 100°C (-67 to 212°F). #### **Ambient temperature effects:** ±0.013% of span per °C. ±0.025% of span per °C for spans less than 55°C. Warmup drift: ±0.1% of span max., with $V_{supply} = 24 \text{ VDC}$ and $R_{loop} = 250 \ \forall$. Stable within 30 minutes. Supply voltage: 8.5 to 35 VDC. Voltage effect ±0.001% of span per volt. Reverse polarity protected. **Maximum load resistance:** The maximum allowable resistance of the signal carrying loop is: $$R_{loop max} = \frac{V_{supply} - 8.5}{0.020 \text{ amps}}$$ Example: With supply voltage 24 VDC, maximum loop resistance is 775 \forall . Minimum span: 27.8°C (50°F). #### Connections: Terminal block for wires AWG 22 to AWG 14. **Physical:** Polycarbonate case, epoxy potted for moisture resistance. Weight: 1.1 oz. (30 g). # Miniature RTD Transmitters # **RTD** input types 2-wire resistance thermometer: | Element | | Code | |---------------------------|----------------|--------| | Platinum (0.00392 TCR) | 100 ∀ at 0°C | PA | | Platinum (0.00391 TCR) | 100 ∀ at 0°C | РВ | | Platinum (0.00385 TCR) | 100 ∀ at 0°C | PD, PE | | Platinum (0.00385 TCR) | 1000 ∀ at 0°C | PF | | Platinum (0.00375 TCR) | 1000 ∀ at 0°C | PW | | Nickel-iron (0.00518 TCR) | 604 ∀ at 0°C | FA | | Nickel-iron (0.00527 TCR) | 1000 ∀ at 70°F | FB | | Nickel-iron (0.00527 TCR) | 2000 ∀ at 70°F | FC | | Nickel (0.00672 TCR) | 120 ∀ at 0°C | NA | ### Dimensions in inches (mm) # Special high-accuracy calibration For high system accuracy, specify transmitters with matched calibration. Temptrans match calibrated to a sensor are always ordered as assemblies. Common examples are shown in Section 1. ## **Specification and order options:** | TT111 | Model number: TT111 or TT211 | | |--------------------------------|---|--| | PD | RTD element code from table | | | 1 | Output: 4 to 20 mA DC | | | С | Temperature range code starting on page 4-20 | | | | [Ex: $C = 0$ to $100^{\circ}C$ (32 to $212^{\circ}F$)] | | | | | | | TT111PD1C = Sample part number | | | ## **Wiring Diagram** **▼**= STANDARD OPTIONS # TT246 RTD Transmitters #### Overview Specify this rugged, accurate transmitter for process control and other industrial applications. Model TT246 outputs 1 to 5 VDC proportional to temperature. It draws only 3 mA of quiescent current, making it ideal for solar or battery powered systems. - 2 or 3-wire RTD input - Ambient rated to 85°C (185°F) - Fits DIN "B" style connection heads - Optional high-accuracy calibration to Minco RTDs for improved accuracy; see next page and page 4-22 for more information. #### **Specifications** Output: Linear with temperature over specified range. TT246: 1 to 5 VDC Calibration Accuracy: ±0.1% of span (0.2% of span for spans less than 10 ∀) Linearity: 0.1% of span, referenced to actual sensor temperature Adjustments Zero and span, ±5% of span, non-interacting. Factory set. Ambient temperature: Operating: -40 to 85°C (-40 to 185°F) Storage: -55 to 100°C (-67 to 212°F) #### Ambient temperature effects: ±0.009% of span per °C $\pm 0.014\%$ of span per °C for spans less than 10 \forall #### Warmup drift: $\pm 0.1\%$ of span max., with $V_{supply} = 24$ VDC and $R_{loop} = 250 \ \forall$. Stable within 15 minutes. #### Supply voltage: TT246: 7.5 to 35 VDC Voltage effect ±0.001% of span per volt. Reverse polarity protected. Supply current: 3mA max. with no load. Maximum load resistance: The maximum allowable resistance of the signal carrying loop is: $$R_{loop\ max} = \frac{V_{supply} - 10}{0.020\ \text{amps}}$$ Example: With supply voltage 24 VDC, maximum loop resistance is 700 \forall . Minimum span: 10°C (18°F). Minimum output current: 2.2 mA. Maximum output current: 28 mA. **Leadwire
compensation:** (3-wire RTD) $\pm 0.05\%$ of span per \forall up to 25 \forall in each leg. Hazardous atmospheres: May be used with Minco explosion- proof connection heads. Connections: Terminal block for wires AWG 22 to AWG 14. Physical: Polycarbonate case, epoxy potted for moisture resistance. Weight: 2.0 oz. (57 g). **▼**= STANDARD OPTIONS # **TT246 RTD Transmitters** ## **RTD** input types 2 or 3-wire resistance thermometer: | Element | | Code | |---------------------------|----------------|--------| | Platinum (0.00392 TCR) | 100 ∀ at 0°C | PA | | Platinum (0.00391 TCR) | 100 ∀ at 0°C | PB | | Platinum (0.00385 TCR) | 100 ∀ at 0°C | PD, PE | | Platinum (0.00385 TCR) | 1000 ∀ at 0°C | PF | | Platinum (0.00375 TCR) | 1000 ∀ at 0°C | PW | | Copper (0.00427 TCR) | 10 ∀ at 25°C | CA | | Nickel-iron (0.00518 TCR) | 604 ∀ at 0°C | FA | | Nickel-iron (0.00527 TCR) | 1000 ∀ at 70°F | FB | | Nickel-iron (0.00527 TCR) | 2000 ∀ at 70°F | FC | | Nickel (0.00672 TCR) | 120 ∀ at 0°C | NA | ## Dimensions in inches (mm) # Special high-accuracy calibration For high system accuracy, specify transmitters with matched calibration. Temptrans match calibrated to a sensor are always ordered as assemblies. # Specification and order options: | TT246 | Model Number: | |--------------------------------|---| | PB | RTD element code from table | | 1 | | | K | Temperature range code starting on page 4-20 [Ex: K = 0 to 200°C (32 to 392°F)] | | TT246PB1K = Sample part number | | # **Wiring Diagram** **▼**= STANDARD OPTIONS # TT205 Thermocouple Transmitters #### Overview Model TT205 interfaces with thermocouples for use in process control and other industrial applications. Model TT205 offers superior performance in an economical and small package. - Thermocouple input - Fits DIN "B" style connection heads ## **Specifications** Output: 4 to 20 mA over specified range. Accuracy: ±0.2% of span. Linearity: Voltage linear. The output signal is voltage linear (not temperature linear) and is intended for use with instruments which compensate for the nonlinear signal output of the thermocouples sensor. **Adjustments:** Zero and span, ±5% of span, non-interacting. Factory set. Warmup drift: ±0.2% of span max., with $V_{supply} = 24$ VDC and $R_{loop} = 250 \ \forall$. Stable within 15 minutes. Supply voltage: 8.5 to 35 VDC Voltage effect ±0.001% of span per volt. Reverse polarity protected. **Maximum load resistance:** The maximum allowable resistance of the signal carrying loop is: $$R_{loop \, max} = \frac{V_{supply} - 10}{0.020 \, \text{amps}}$$ Example: With supply voltage 24 VDC, maximum loop resistance is 700 \forall . Minimum output current: 1.5 mA. Maximum output current: 28 mA. Burnout: Downscale burnout standard; upscale optional. Connections: Terminal block for wires AWG 22 to AWG 14. **Physical:** Polycarbonate case, epoxy potted for moisture resistance. Weight: 1.8 oz. (52 g). # **TT205 Thermocouple Transmitters** ### TT205 #### Ambient temperature: Operating: -10 to 60°C (14 to 140°F). Storage: -55 to 100°C (-67 to 212°F). Ambient temperature effects: ±0.036% of span per °C. Cold junction compensation drift: ±0.05°C per °C. Minimum span: 150°C (270°F). # Specification and order options | TT205 | Model Number:
TT190: Round
TT205: Rectangular | |---------------------------------|---| | J | TC junction type: E = Chromel-Constantan J = Iron-Constantan K = Chromel-Alumel T = Copper-Constantan | | U | U = Ungrounded junction (required) | | 1 | Output: 4 to 20 mA DC | | AN | Temperature range code starting on page 4-20 [Ex: AN = -17.8 to 148.9°C (0 to 300°F)] | | TT205JU1AN = Sample part number | | ## TT205 Dimensions in inches (mm) ## **Wiring Diagram** **▼= STANDARD OPTIONS**Specifications subject to change # TT508/TT518 Programmable Temperature Transmitter #### Overview This transmitter amplifies a signal from a RTD or linear resistance, and it turns the signal into a current which increases from 4 to 20 milliamperes as the temperature or input signal increases. This industry-standard 4-20mA signal travels thousands of feet over a pair of wires, ignoring electrical interference and bringing the temperature, accurately, into your computer or controller. Drawing power directly from the signal line, only 2 wires are needed for power and signal. - RTD or Ohm input - Accurate, Stable 4-20mA Output - PC and field-programmable - FM Approved Intrinsically Safe ## Converts multiple inputs Temperature measurement can be done with one of several RTD's: 100 \forall , 1000 \forall platinum, 100 \forall Nickel and 1000 \forall Nickel. Because amplification and conversion of the input signal is performed within a few feet of the sensor, electrical interference in noisy environments is eliminated. The transmitter can be mounted at the field location in a standard DIN form B head or on a DIN rail inside a local box. #### **Applications** Single temperature measurement ### Configuration The TT508/TT518 is delivered configured to the customer's specifications, including the transmitter's measurement range and RTD type. #### **PC Programming** The TT508/TT518 transmitter can be configured via a standard PC using a programming kit. It can be configured before installation or while installed in the process - even in hazardous areas. Communication is 2-way, so set-up and serial/tag numbers can be retrieved from the transmitter. #### **Specifications** Ambient temperature range: -40°C to +85°C Supply voltage: 8 - 30 VDC Warm-up time: 5 min. Communication interface: PC Interface/Loop Link Signal/noise ratio: Min. 60 dB Response time (programmable): 0.33 sec. to 60 sec. Update time: 135 msec. Calibration temperature: 20 to 28°C Effect of supply voltage change: < 0.005% of span/ VDC **EMC-Immunity influence:** $< \pm 0.5\%$ of span Vibration: IEC 600 68-2-6 Test FC Lloyd's specification no. 1: 4 g / 2 - 100 Hz Max. wire size: AWG14 (1.5 mm²) Air humidity: 0 - 95% RH Dimensions: 1.73 x 0.84 in (44 x 20.2mm) Tightness (enclosure/terminal): IP 68 / IP00 Weight: 50g **▼**= STANDARD OPTIONS # TT508/TT518 Programmable Temperature Transmitter # Inputs (common specifications) Max. offset: 50% of selected max. value Cable resistance per wire (max.): $10\forall$ Sensor current: >0.2mA, <0.4mA Effect of sensor cable resistance: (3-wire): $<0.002 \ \forall / \forall$ #### Input: | Туре | Minimum | Maximum | Minimum | |--|---------|---------|----------------------| | | Value | Value | Span | | PD (Pt100)
PF (Pt1000)
Linear Res. | -200°C | | 25°C
25°C
30 ∀ | #### **Basic accuracy:** PD/PF (Pt100/1000): $<\pm0.3^{\circ}$ C Linear Resistance: $<\pm0.2$ \forall #### Temperature coefficient: PD/PF (Pt100/1000): $<\pm0.01^{\circ}$ C/°C Linear Resistance: $<\pm20$ m \forall /°C #### **Current output:** Signal range: 4 - 20 mA Min. signal range: 16 mA Load resistance : < (Vsup. – 8) / 0.023 $[\forall]$ Load stability: \pm 0.01% of span / 100 \forall #### Sensor error detection: Programmable: 3.5 - 23 mA, or no action Namur NE43 Downscale/Upscale: 3.5 mA/ 23 mA #### Approvals: EMC: EN 61326-1 ATEX.: KEMA 03ATEX1535 FM: 2D5A7 CSA: 1125003 GOST R: Yes GOST Ex: Yes DNV Marine: Stand. F. Certification No. 2.4 #### Input The input type is selected to be one of these types: • RTD (2 or 3-wire): PT100, PT1000 ### Output The 4-20 mA output follows the TT518 input configuration, reflecting the temperature and/or resistance. The unit is protected against polarity reversal. The output signal action can be reversed with respect to the input signal. Sensor and/or cable errors can be programmed to cause the output to go to a fixed value. ### Specification and order options: | TT518 | Model Number:
TT518 Approvals, fits .236" Probe Max
TT508 No Approvals, fits .250" Probe Max | |--|---| | PD | Sensor Type:
PD = 100 ∀ Platinum RTD (0.00385)
PF = 1000 ∀ Platinum RTD (0.00385) | | (-25/200) | Ranging: Specify temperature range in either °C or °F. For example, -25° to +200°C = 4 to 20 mA. | | С | Display Units:
C = Celsius
F = Fahrenheit | | 1 | Calibration: 1 = Nominal 2 = Matched to sensor ±0.75% of span For other calibration options, contact Minco | | Z | Sensor Leads: (3 Lead Recommended) Y = 2-lead RTD (Supplied with jumper wire to connect terminals 3 and 4) Z = 3-lead RTD | | TT518PD(-25/200)C1Z : Sample part number | | Note: TT508 does not carry any external approvals, but does allow a .250" probe to pass through its center hole **▼**= STANDARD OPTIONS # TT509/TT519 Programmable Temperature Transmitter #### Overview This transmitter amplifies a signal from a thermocouple, and it turns the signal into a current which increases from 4 to 20 milliamperes as the temperature or input signal increases. This industry-standard 4-20mA signal travels thousands of feet over a pair of wires, ignoring electrical interference and bringing the temperature, accurately, into your computer or controller. Drawing power directly from the signal line, only 2 wires are needed for power and signal. - Thermocouple or Voltage Input - Accurate, Stable 4-20mA Output - PC and field-programmable - · Galvanically Isolated #### **Converts multiple inputs** Temperature measurement can be done with multiple thermocouple types, which boast high operating temperature ranges. Because amplification and conversion of the input signal is performed within a few feet of the sensor, electrical interference in noisy environments is eliminated. The transmitter can be mounted at the field location in a standard DIN form B head or on a DIN rail inside a local box. #### **Applications** • Single
temperature measurement ### Configuration The TT509/TT519 is delivered configured to the customer's specifications, including the transmitter's measurement range and thermocouple type. #### PC programming The TT509/TT519 transmitter can be configured via a standard PC using a programming kit. It can be configured before installation or while installed in the process - even in hazardous areas. Communication is 2-way, so set-up and serial/tag numbers can be retrieved from the transmitter. ### **Specifications** Ambient temperature range: -40°C to +85°C Supply voltage: 7.2 -30 VDC Warm-up time: 5 min. Communication interface: PC Interface/Loop Link Signal/noise ratio: Min. 60 dB Response time (programmable): 1 sec. to 60 sec. Update time: 440 msec. Calibration temperature: 20 to 28°C Effect of supply voltage change: < 0.005% of span/ VDC **EMC-Immunity influence:** $< \pm 0.5\%$ of span Electrical Isolation, test/operation: 1.5kVAC/50VAC Vibration: IEC 600 68-2-6 Test FC Lloyd's specification no. 1: 4 g / 2 - 100 Hz Max. wire size: AWG14 (1.5 mm²) Air humidity: 0 - 95% RH **Dimensions:** 1.73 x 0.84 in (44 x 20.2mm) **Tightness (enclosure/terminal):** IP 68 / IP00 Weight: 50g **▼**= STANDARD OPTIONS # TT509/TT519 Programmable Temperature Transmitter ## Inputs (common specifications) Max. offset: 50% of selected max. value Input: | Туре | Minimum
Value | Maximum
Value | Minimum
Span | |------|------------------|------------------|-----------------| | Е | -100°C | +1000°C | 50°C | | J | -100°C | +1200°C | 50°C | | K | -180°C | +1372°C | 50°C | | Т | -200°C | +400°C | 50°C | | В | +400°C | +1820°C | 100°C | | N | -180°C | +1300°C | 50°C | | R | -50°C | +1760°C | 100°C | | S | -50°C | +1760°C | 100°C | #### **Basic accuracy:** TC type E, J, K, L, N, T: $<\pm 1^{\circ}$ C TC type B, R, S: $<\pm 2^{\circ}$ C Voltage: $\P\pm 10$ uV #### **Temperature coefficient:** TC type E, J, K, T: $<\pm0.05^{\circ}$ C/°C TC type B, N, R, S: $<\pm0.2^{\circ}$ C/°C Voltage: <±1uV/°C Cold Junction Compensation: <±1°C #### **Current output:** Signal range: 4 - 20 mA Min. signal range: 16 mA Load resistance : < (Vsup. – 7.2) / 0.023 $[\forall]$ Load stability: \pm 0.01% of span / 100 \forall ## Sensor error detection: Programmable: 3.5 - 23 mA, or no action Namur NE43 Downscale/Upscale: 3.5 mA/ 23 mA #### Approvals: EMC: EN 61326-1 ATEX.: KEMA 06ATEX0062 GOST R: Yes GOST Ex: Yes DNV Marine: Stand. F. Certification No. 2.4 #### Input The input type is selected to be one of these types: - Type E, J, K, T, B, N, R, S Thermocouple - · Voltage Input ## Output The 4-20 mA output follows the TT519 input configuration, reflecting the temperature. The unit is protected against polarity reversal. The output signal action can be reversed with respect to the input signal. Sensor and/or cable errors can be programmed to cause the output to go to a fixed value. ## Specification and order options: | TT519 | Model Number:
TT519 Approvals, fits .236" Probe Max
TT509 No Approvals, fits .250" Probe Max | | |-----------|---|--| | К | Sensor Type: E=Type E Thermocouple J=Type J Thermocouple K=Type K Thermocouple T=Type T Thermocouple B=Type B Thermocouple N=Type N Thermocouple R=Type R Thermocouple S=Type S Thermocouple V = Voltage Input | | | (-25/200) | Ranging: Specify temperature range in either °C or °F. For example, -25° to +200°C = 4 to 20 mA. | | | С | Display Units: C = Celsius F = Fahrenheit MV = Millivolts | | | 1 | Calibration: 1 = Nominal | | | Υ | Sensor Leads:
Y = 2-lead | | | TT519K(-2 | TT519K(-25/200)C1Y: Sample part number | | Note: TT509 does not carry any external approvals, but does allow a .250" probe to pass through its center hole **▼**= STANDARD OPTIONS # TT273 Field Rangeable RTD Temperature Transmitter #### Overview Model TT273 is a 2-wire temperature transmitter for 2 or 3-lead $100 \ \forall$ platinum RTDs. The transmitter converts the RTD temperature into a linearized 4 to 20 mA DC current signal. Because this current signal is immune to leadwire and electrical noise, the TT273 lets you obtain accurate temperature readings from RTDs thousands of feet away. An ordinary twisted pair of wires carries both the temperature signal and power for the transmitter's electronics. An LED conveniently indicates the status of the control loop. The brightness is directly proportional to the loop current. A very bright LED indicates an open RTD; a dark LED signals a shorted RTD or loss of current loop power. - 4 to 20 mA current signal - Fits standard 35 mm DIN rail - · Field-calibrate to your temperature range - Optional high-accuracy calibration to Minco RTDs for improved accuracy; see next page and page 5-22 for more information - Optional Input/Output isolation to 600 VRMS ## **Specifications** Output: 4 to 20 mA DC over specified range. Calibration accuracy: ±0.2% of span. Linearity: ±0.2% of span, reference to actual sensor temperature. #### Adjustments: Zero: -50 to 150°C (-58 to 302°F). Span: 50 to 600°C (90 to 1080°F). #### Ambient temperature: Operating: -40 to 85°C (-40 to 185°F). Storage: -55 to 100°C (-67 to 212°F). #### Ambient temperature effects: $\pm 0.018\%$ of span/°C ($\pm 0.01\%$ of span/°F). Warmup drift: ±0.1% of span max., assuming $V_{supply} = 24 \text{ VDC} \text{ and } R_{loop} = 250 \ \forall$. Stable within 15 minutes. Input/output isolation (optional): 600 VRMS, 1 minute. #### Supply voltage: Non-Isolated: 10 to 45 volts DC with no load. Isolated: 13 to 45 volts DC with no load. Reverse polarity protected. Voltage effect: ±0.001% of span per volt. Lead wire compensation: (3-wire RTD) $\pm 0.05\%$ of span per \forall , up to 25 \forall in each leg. **Maximum load resistance:** The maximum allowable resistance of the signal-carrying loop is given by this formula: Non-Isolated: $R_{loop \ max} = \frac{V_{supply} - 10}{0.020 \ \text{amps}}$ Isolated: $R_{loop max} = \frac{V_{supply} - 13}{0.020 \text{ amps}}$ Maximum output current: 28 mA. Connections: Terminal block accepts wires from AWG 22 to AWG 14. Physical: Polycarbonate, DIN rail enclosure. Weight: 4.2 oz. (119 g). **▼**= STANDARD OPTIONS # TT273 Field Rangeable RTD Temperature Transmitter # **RTD** input types 2 or 3-wire 100 ∀ platinum RTD. | Element | | Code | |------------------------|-------------|--------| | Platinum (0.00392 TCR) | 100∀ at 0°C | PA | | Platinum (0.00391 TCR) | 100∀ at 0°C | PB | | Platinum (0.00385 TCR) | 100∀ at 0°C | PD, PE | ## Special high-accuracy calibration For high system accuracy, specify transmitters with matched calibration. Temptrans match calibrated to a sensor are always ordered as assemblies. Common examples are shown in Section 1. # Specification and order options | TT273 | Model number | | |----------|--|--| | PD | RTD element code from table | | | 1 | Output: 4 to 20 mA DC | | | N | Input/Output:
N = Non-isolated
I = Isolated | | | (-25/50) | Factory preset temp. range:
(4 mA/20 mA temperature)
Range is user adjustable.
Refer to the Zero and Span specifications. | | | С | Temperature scale: F = Fahrenheit C = Celsius | | | TT273PD | TT273PD1N(-25/50)C = Sample part number | | ### Dimensions in inches (mm) ## Wiring diagram **▼= STANDARD OPTIONS**Specifications subject to change # TT274 Field Rangeable Thermocouple Temperature Transmitter #### Overview Model TT274 is a 2-wire temperature transmitter for types J and K thermocouples. The transmitter converts the thermocouple's millivolt signal to a 4 to 20 mA DC current signal. Because this current signal is immune to leadwire and electrical noise, the TT274 lets you obtain accurate temperature readings from thermocouples thousands of feet away. An ordinary twisted pair of wires carries both the temperature signal and power for the transmitter's electronics. With the isolation option, the mV input signal from the thermocouple is electrically isolated from the 4 to 20 mA output, allowing use of grounded thermocouples with multiple TT274s operating from the same power supply. An LED conveniently indicates the status of the control loop. The brightness is directly proportional to the loop current. A dark LED signals an open sensor or loss of current loop power. - 4 to 20 mA current signal - Fits standard 35 mm DIN rail - Field-calibrate to your thermocouple type and temperature range - Optional Input/Output isolation to 600 VRMS #### **Specifications** Input: Type J or K thermocouple (field selectable). Output: 4 to 20 mA DC over specified range. Accuracy: ±0.2% of span. Linearity: Voltage linear. The output signal of the TT274 is voltage linear (not temperature linear) and is intended for use with instruments which compensate for the nonlinear signal output of the thermocouple sensor. #### Adjustments: Zero: -50°C to 150°C (-58°F to 302°F). Span: Type J: 125 to 850°C (225 to 1530°F). Type K: 150 to 1200°C (270 to 2160°F). ## Ambient temperature: Operating: -40 to 85°C (-40 to 185°F). Storage: -55 to 100°C (-67 to 212°F). Ambient temperature effects: $\pm 0.036\%$ of span/°C ($\pm 0.02\%$ of span/°F). Cold junction compensation drift: ± 0.03 °C/°C for -25 to 70°C ambients. ± 0.06 °C/°C for -40 to -25°C and 70 to 85°C ambients. **Warmup drift:** $\pm 0.1\%$ of span max., assuming $V_{\text{Supply}} = 24 \text{ VDC}$ and $R_{\text{loop}} = 250 \text{ } \forall$. Stable within 15 minutes. Input/output isolation (optional): 600 VRMS, 1 minute. #### Supply voltage: Non-Isolated: 10 to 45 volts DC with no load. Isolated: 13 to 45 volts DC with no load. Reverse polarity protected. Voltage effect: ±0.001% of span per volt. **Maximum load resistance:** The maximum allowable resistance of the
signal-carrying loop is given by this formula: Non-Isolated: $R_{loop \ max} = \frac{V_{supply} - 10}{0.020 \ \text{amps}}$ Isolated: $R_{loop max} = \frac{V_{supply} - 13}{0.020 \text{ amps}}$ Maximum output current: 28 mA. **Connections:** Terminal block accepts wires from AWG 22 to AWG 14. Physical: Polycarbonate, DIN rail enclosure. Weight: 4.2 oz. (119 g). **▼**= STANDARD OPTIONS # TT274 Field Rangeable Thermocouple Temperature Transmitter ## Specification and order options | | _ | |---|--| | TT274 | Model number | | К | T/C element code J = Type J thermocouple K = Type K thermocouple | | 1 | Output: 4 to 20 mA DC | | N | Input/Output:
N = Non-isolated
I = Isolated | | (-25/200) | Factory preset temp. range:
(4 mA/20 mA temperature)
Range is user adjustable.
Refer to the Zero and Span specifications. | | С | Temperature scale: F = Fahrenheit C = Celsius | | TT274K1N(-25/200)C = Sample part number | | ### Dimensions in inches (mm) ## Wiring diagram # Programmable Transmitters #### Overview Models TT520 and TT530 are programmable transmitters designed for process control and other applications. Both transmitters use a 4-20mA current loop output and are PC programmable to accept a signal from a thermocouple, a Resistance Temperature Detector (RTD), or a millivolt signal. Model TT520 can be mounted at the field location in a standard DIN form B head or on a DIN rail inside a local box (with an AC807 Minco DIN rail adapter), whereas model TT530 can be mounted vertically or horizontally on a DIN rail. · Accurate, Stable 4-20mA Output • PC and field-programmable · Galvanically isolated • FM Approved Intrinsically Safe • Single temperature measurement ## **Specifications Common Specifications:** Supply voltage: 7.2 - 30 VDC Temperature coefficient: < ± 0.01% of span/°C Effect of supply voltage change: < 0.005% of span/ VDC Max. wire size: AWG14 (1.5 mm²) Air humidity: 0 - 95% RH **Dimensions:** TT520: Ø1.73 x 0.84 in (Ø44 x 20.2mm) TT530: 4.29 x .0.93 x 4.09 in (109 x 23.5 x 104mm) #### AC205817 USB Loop Link Programmer: TT520 and TT530 transmitters are preconfigured for ease of use. The AC205817 USB Loop Link Programmer allows the user to reconfigure the transmitter using free, Windows- based software. Tightness (enclosure/terminal): TT520: IP 68 / IP00 TT530: IP50 / IP20 Weight: TT520: 50 g TT530: 145 g #### TC Input: #### Minimum measurement range: Type E, J, K, T: 50°C Max. offset: 50% of selected max. value #### **Basic accuracy:** Type E, J, K, T: $\leq 1^{\circ}$ C Cold junction compensation (CJC): ≤1.0°C #### **Temperature coefficient:** Type E, J, K, T: $\leq \pm 0.05 \,^{\circ}\text{C} / \,^{\circ}\text{C}_{amb}$ Sensor error detection: yes | RTD
type | Minimum
value | Maximum
value | Minimum span. | |-------------|------------------|------------------|---------------| | PD (Pt100) | -200°C | +850°C | 25°C | | PF (Pt1000) | -200°C | +850°C | 25°C | #### RTD-input: Basic accuracy PD/PF (Pt100/1000): ≤±0.2°C Temperature coefficient: ≤±0.01°C / °C #### **Current output:** Signal range: 4 - 20 mA Load resistance: < (Vsup. - 7.2) / 0.023 [\forall] Intrinsic Safety data: FM Approved Intrinsically Safe for Class 1, Div. 1, Groups A-D, Entity Approval V_{max}: 30.0 VDC C_i: 1 nF I_{max}: 120 mADC L_i: 10 #H P_{max}: 0.84 W Europe: ATEX II 1 G # Meets these European requirements: EMC 2004/108/EC: Standard EN 61326 **▼**= STANDARD OPTIONS # **Programmable Transmitters** # Specifications and order options | TT520 | Model Number: | | | | |---------------|--|--|--|--| | | TT520 Temperature Transmitter | | | | | | TT530 DIN Rail Temperature Transmitter | | | | | PD | Sensor Type: | | | | | | PD = 100∀ Platinum RTD (0.00385) | | | | | | PF = 1000∀ Platinum RTD (0.00385) | | | | | | E = Type EThermocouple | | | | | | J = Type J Thermocouple | | | | | | K = Type KThermocouple | | | | | | T = Type T Thermocouple | | | | | (-25/200) | Temperature Range: | | | | | | Specify temperature range in either °C or °F. | | | | | | For example, -25° to $+200^{\circ}$ C = 4 to 20 mA. | | | | | C | Temperature Units: | | | | | | C = Celsius | | | | | | F = Fahrenheit | | | | | 1 | Calibration: | | | | | | 1 = Nominal | | | | | | $2 = Matched to sensor \pm 0.75\% span$ | | | | | | For other calibration options, contact Minco | | | | | Υ | Sensor Leads: | | | | | | Y = 2-lead RTD (or thermocouple) | | | | | | Z = 3-lead RTD | | | | | | X = 4-lead RTD | | | | | TT520PD(-25/2 | 200)C1Y = Sample part number | | | | ### Dimensions in inches (mm) # **Wiring Diagrams** TC to 4...20 mA # Dimensions in inches (mm) Specifications subject to change 2-wire installation in control room # Programmable Transmitters w/ HART® Protocol Overview Models TT511, TT521 and TT531 are programmable transmitters designed for process control and other applications. All three models use HART® communication protocol and are PC programmable to accept a signal from a thermocouple, a Resistance Temperature Detector (RTD), or a millivolt signal. Model TT511/TT521 transmitter can be mounted at the field location in a standard DIN form B head or on a DIN rail inside a local box (with an AC807 Minco DIN rail adapter). Model TT531 can be mounted vertically or horizontally on a DIN rail. - T/C, RTD, or mV input - HART® 7/5 Communication Protocol - PC and field-programmable - · Galvanically isolated - FM Approved Intrinsically Safe - Single temperature measurement - · Difference temperature measurement - · Average temperature measurement #### HART® Communication By way of 2-wire HART® communication between the process computer and the TT511, TT521 or TT531, the transmitter is programmable, readable, and controllable. - Up to 63 transmitters can be controlled in a multidrop system. (Parallel connection of all transmitters on 2 wires). - Set-up, configuration and control can be done from a central monitoring room. When each transmitter is connected to a 2-wire cable, a standard 4-20 mA signal can be used at the same time as the HART® communication. #### **Specifications** ### **Common Specifications:** Supply voltage: 8.0 - 30 VDC Specifications subject to change Communication interface: HART® 7/5 and PC interface Temperature coefficient: $< \pm 0.005\%$ of span/°C Effect of supply voltage change: < 0.005% of span/ VDC Max. wire size: AWG14 (1.5 mm²) Air humidity: 0 - 95% RH #### **Dimensions:** TT511/TT521: Ø1.73 x 0.84 in (Ø44 x 20.2mm) TT531: 4.29 x .0.93 x 4.09 in (109 x 23.5 x 104mm) #### Tightness (enclosure/terminal): TT511/TT521: IP 68 / IP00 TT531: IP50 / IP20 #### Weight: TT511/TT521: 50 g TT531: 145 g #### AC205817 USB Loop Link Programmer: TT511/TT521 and TT531 transmitters are preconfigured for ease of use. The AC205817 USB Loop Link Programmer allows the user to reconfigure the transmitter using free, Windows-based software. #### TC Input: #### Minimum measurement range: Type E, J, K, T:50°C Max. offset: 50% of selected max. value #### **Basic accuracy:** Type E, J, K, T: $<\pm0.5$ °C Cold junction compensation (CJC): <±1.0°C #### Temperature coefficient: Type E, J, K, T: \pm 0.025 °C / °C_{amb} Sensor error detection: yes #### RTD-input: | RTD
type | Minimum
value | Maximum
value | Minimum span. | |-------------|------------------|------------------|---------------| | PD (Pt100) | -200°C | +850°C | 25°C | | PF (Pt1000) | -200°C | +850°C | 25°C | Basic accuracy PD/PF (Pt100/1000): ≤±0.1°C Temperature coefficient: ≤±0.005°C / °C ### **Current output:** Signal range: 4 - 20 mA Load resistance: < (Vsup. - 8) / 0.023 [∀] Intrinsic Safety data: FM Approved Intrinsically Safe for Class 1, Div. 1, Groups A-D, Entity Approval V_{max}: 30.0 VDC C_i: 1 nF I_{max}: 120 mADC L_i: 10 #H P_{max}: 0.84 W Europe: ATEX II 1 G # Meets these European requirements: EMC 2004/108/EC: Standard EN 61326-1 # Programmable Transmitters w/ HART® Protocol ## Specifications and order options #### Model Number: TT521 TT511 No Approvals, Temperature Transmitter with HART® protocol, fits .250" Probe Max TT521 Temperature Transmitter with HART® Protocol, fits .236" Probe Max TT531 DIN Rail Temperature Transmitter with HART® Protocol PD Sensor Type: PD = 100∀ Platinum RTD (0.00385) PF = 1000∀ Platinum RTD (0.00385) E = Type E ThermocoupleJ = Type J ThermocoupleK = Type KThermocoupleT = Type T Thermocouple(-25/200)Temperature Range: Specify temperature range in either °C or °F. For example, -25° to $+200^{\circ}$ C = 4 to 20 mA. Temperature Units: C = CelsiusF = Fahrenheit Calibration: 1 = Nominal $2 = Matched to sensor \pm 0.75\% span$ For other calibration options, contact Minco Y = 2-lead RTD (or thermocouple) Z = 3-lead RTD X = 4-lead RTD TT521PD(-25/200)C1Y = Sample part number ### Dimensions in inches (mm) ### **Wiring Diagrams** #### HART® Multidrop Wiring Diagram # Temptran[™] Temperature Ranges Below is a list of commonly selected Temptran temperature ranges. The endpoints of the temperature range correspond to the Temptran's 4 and 20 mA signals. Choose the smallest possible span for best accuracy. Be sure to check the temperature limits of the sensor you specify. If you do not find the temperature range required by your application, go to www.minco.com for a complete list of temperature ranges. Custom ranges are also available for a small setup charge. Contact Minco Sales and Customer Service for more information. ### For more temperature ranges (over 400 options) contact Minco Sales and Customer Service | | | | | RTD Temptrans | | | Thermocouple | Temptrans | | |---------------|---------|-----------|---------|---------------|----------------------|----------------|-------------------|-----------|-----------| | | Tempera | ature Ran | ge | | TT111, TT115, TT211, | TT829 | TT246, TT220 | TT221 | TT205 | |
Range
code | Zero °F | Span °F | Zero °C | Span °C | Platinum elements* | Other elements | Elements | T/C types | T/C types | | МН | -328 | -148 | -200.0 | -100.0 | PA PB PD PE | | | | | | HG | -325 | 100 | -198.3 | 37.8 | PA PB PD PE PF PW | | | JT | | | QS | -300 | 150 | -184.4 | 65.6 | | | PA PB PD PE | | | | EZ | -148 | 32 | -100.0 | 0.0 | PA PB PD PE PF PW | | PA PB PD PE | | | | LN | -148 | 212 | -100.0 | 100.0 | PA PB PD PE | | | | | | SA | -140 | 100 | -95.6 | 37.8 | | | PA PB PD PE | | | | UL | -103 | 752 | -75.0 | 400.0 | | | | K | | | M | -58 | 122 | -50.0 | 50.0 | PA PB PD PE PF PW | | PA PB PD PE | | | | EO | -58 | 212 | -50.0 | 100.0 | PA PB PD PE | NA | PA PB PD PE | Т | ET | | JD | -58 | 302 | -50.0 | 150.0 | PA PB PD PE | | PA PB PD PE | J | | | MR | -58 | 500 | -50.0 | 260.0 | | | PA PB PD PE CA NA | | | | SD | -50 | 100 | -45.6 | 37.8 | PA PB PD PE | | | | | | MI | -50 | 150 | -45.6 | 65.6 | PA PB PD PE | | PA PB PD PE | Т | | | Al | -50 | 275 | -45.6 | 135.0 | PA PB PD PE PF PW | FB FC FL NA | PA PB PD PE | | | | MS | -50 | 650 | -45.6 | 343.3 | PA PB PD PE | | PA PB PD PE | | | | AD | -40 | 120 | -40.0 | 48.9 | PA PB PD PE | FB FC | PA PB PD PE | | | | AK | -40 | 140 | -40.0 | 60.0 | PA PB PD PE PU | | PA PB PD PE | | | | BE | -40 | 160 | -40.0 | 71.1 | PA PB PD PE | FB | PA PB PD PE | | | | GH | -40 | 212 | -40.0 | 100.0 | PA PB PD PE | | PA PB PD PE | | | | UE | -40 | 302 | -40.0 | 150.0 | PA PB PD PE | | PA PB PD PE | | | | L | -30 | 120 | -34.4 | 48.9 | PA PB PD PE PF PW | FB FC | IAIDIDIL | | | | AS | -30 | 130 | -34.4 | 54.4 | PA PB PD PE PF PW | FB | PA PB PD PE | | | | R | -30 | 150 | -34.4 | 65.6 | PA PB PD PE | FB FC | PA PB PD PE | | | | DN | -22 | 122 | -30.0 | 50.0 | PA PB PD PE | LD LC | PA PB PD PE | | | | EE | -22 | 302 | -30.0 | 150.0 | PA PB PD PE | | PA PB PD PE | | | | DO | -22 | 120 | -28.9 | 48.9 | | ND | PA PB PD PE | | | | | | | | | | | | | | | EN | -20 | 140 | -28.9 | 60.0 | PA PB PD PE PF PW | FB FC NA | PA PB PD PE | | | | В | -20 | 180 | -28.9 | 82.2 | PA PB PD PE | FB FC NA | PA PB PD PE CA | | | | BP | -4 | 104 | -20.0 | 40.0 | PA PB PD PE | FC | PA PB PD PE | | | | SH | -4 | 122 | -20.0 | 50.0 | PA PB PD PE | | | | | | DB | -4 | 212 | -20.0 | 100.0 | PA PB PD PE | | PA PB PD PE | | | | JZ | 0 | 65 | -17.8 | 18.3 | PA PB PD PE | | PA PB PD PE | | | | S | 0 | 100 | -17.8 | 37.8 | PA PB PD PE PF PG PW | FB | PA PB PD PE PW | | | | JH | 0 | 120 | -17.8 | 48.9 | PA PB PD PE PF PW | FC | PA PB PD PE | | | | HD | 0 | 130 | -17.8 | 54.4 | PA PB PD PE PF PW | | PA PB PD PE | | | | DV | 0 | 150 | -17.8 | 65.6 | PA PB PD PE | FB | PA PB PD PE | | | | El | 0 | 160 | -17.8 | 71.1 | PA PB PD PE | | | | | | AC | 0 | 200 | -17.8 | 93.3 | PA PB PD PE PF PW | FB NA | PA PB PD PE CA | EJKT | Т | | EY | 0 | 250 | -17.8 | 121.1 | PA PB PD PE PF PW | NA | PA PB PD PE | JK | JKT | | AN | 0 | 300 | -17.8 | 148.9 | PA PB PD PE PF PW | FB FC NA | PA PB PD PE CA NA | EJKT | K | | JA | 0 | 350 | -17.8 | 176.7 | PA PB PD PE | | PA PB PD PE | KJ | | | DS | 0 | 400 | -17.8 | 204.4 | PA PB PD PE | NA | PA PB PD PE CA NA | JK | | | AG | 0 | 500 | -17.8 | 260.0 | PA PB PD PE PF PW | NA | PA PB PD PE CA | EJT | JKT | | QN | 0 | 550 | -17.8 | 287.8 | PA PB PD PE | | PA PB PD PE | | | | AB | 0 | 600 | -17.8 | 315.6 | PA PB PD PE PF PW | NA | PA PB PD PE | EJK | J | | AA | 0 | 800 | -17.8 | 426.7 | PA PB PD PE PF PW | | PA PB PD PE | J | JK | | BZ | 0 | 1000 | -17.8 | 537.8 | PA PB PD PE | | PA PB PD PE | JK | EJ | ^{*} Element codes (PA, PB, PD, PE, etc.) are defined in the Resistance/Temperature Tables on page 11-11 # Temptran[™] Temperature Ranges For more temperature ranges (over 400 options) go to www.minco.com | | Temperature Range | | | | RTD Temptrans | | | Thermocouple | Temptrans | |---------------|-------------------|---------|-------|---------|-----------------------|----------------|-------------------|--------------|-----------| | | | | | | TT111, TT115, TT211, | TT829 | TT246, TT220 | TT221 | TT205 | | Range
code | - | Span °F | | Span °C | Platinum
elements* | Other elements | Elements | T/C types | T/C types | | HU | 0 | 1300 | -17.8 | 704.4 | | | | K | | | BY | 14 | 104 | -10.0 | 40.0 | PA PB PD PE | | PA PB PD PE | | | | AJ | 14 | 122 | -10.0 | 50.0 | PA PB PD PE | | PA PB PD PE | | | | AP | 20 | 70 | -6.7 | 21.1 | PA PB PD PE PF PW | | PA PB PD PE | | | | GV | 20 | 100 | -6.7 | 37.8 | PA PB PD PE PF PW | | PA PB PD PE | | | | A | 20 | 120 | -6.7 | 48.9 | PA PB PD PE PF PW | FA FB FC NA | PA PB PD PE PF | | | | HE | 20 | 240 | -6.7 | 115.6 | PA PB PD PE | | | | | | AF | 20 | 320 | -6.7 | 160.0 | PA PB PD PE | FA FB | | | | | QE | 22 | 122 | -5.6 | 50.0 | PA PB PD PE | | | | | | GW | 23 | 131 | -5.0 | 55.0 | PA PB PD PE | | | | | | U | 30 | 80 | -1.1 | 26.7 | PA PB PD PE PF PW | FB FC | PA PB PD PE | | | | DA | 30 | 90 | -1.1 | 32.2 | PA PB PD PE PF PW | FC | PA PB PD PE | | | | DP | 30 | 100 | -1.1 | 37.8 | PA PB PD PE PF PW | | | | | | BI | 30 | 130 | -1.1 | 54.4 | PA PB PD PE PF PW | | PA PB PD PE PF PW | | | | DQ | 30 | 150 | -1.1 | 65.6 | PA PB PD PE | FB | PA PB PD PE | | | | KK | 30 | 180 | -1.1 | 82.2 | PA PB PD PE | | | | | | EV | 30 | 230 | -1.1 | 110.0 | PA PB PD PE | | PA PB PD PE | | | | BN | 30 | 240 | -1.1 | 115.6 | PA PB PD PE PF PW | FB | PA PB PD PE | | | | BJ | 30 | 250 | -1.1 | 121.1 | PA PB PD PE PF PW | NA | PA PB PD PE FA | | | | GQ | 32 | 100 | 0.0 | 37.8 | PA PB PD PE PF PW | | PA PB PD PE | | | | EG | 32 | 104 | 0.0 | 40.0 | PA PB PD PE PF PW | | PA PB PD PE | | | | N | 32 | 122 | 0.0 | 50.0 | PA PB PD PE PF PW | FB FC | PA PB PD PE | | | | HL | 32 | 167 | 0.0 | 75.0 | PA PB PD PE | 1010 | PA PB PD PE | | | | C | 32 | 212 | 0.0 | 100.0 | PA PB PD PE PF PW | FB FC NA | PA PB PD PE CA NA | JT | | | QR | 32 | 257 | 0.0 | 125.0 | PA PB PD PE | TOTC TW | TATOTOTE CATION | 31 | | | DL | 32 | 280 | 0.0 | 137.8 | PA PB PD PE | | PA PB PD PE | | | | I | 32 | 302 | 0.0 | 150.0 | PA PB PD PE PF PU PW | FC NA | PA PB PD PE CA | | 1 | | K | 32 | 392 | 0.0 | 200.0 | PA PB PD PE PU | NA NA | PA PB PD PE CA | JK | 1 | | LX | 32 | 400 | 0.0 | 204.4 | PA PB PD PE | INA | TATBIBLECA |)IC | J | | BW | 32 | 482 | 0.0 | 250.0 | PA PB PD PE | NA | PA PB PD PE | EJKT | 1 | | LF | 32 | 572 | 0.0 | 300.0 | PA PB PD PE | INA | PA PB PD PE | JT | J | | JW | 32 | 932 | 0.0 | 500.0 | PA PB PD PE | | PA PB PD PE | JK | K | | HA | 32 | 1112 | 0.0 | 600.0 | PA PB PD PE PF PW | | TATOTOTE | K | IX. | | GF | 32 | 1472 | 0.0 | 800.0 | PA PB PD PE | | PA PB PD PE | K | K | | SG | 33.8 | 123.8 | 1.0 | 51.0 | PA PB PD PE | | FAFDFDFE | IN . | K | | <u>ы</u>
Н | 40 | 90 | 4.4 | 32.2 | PA PB PD PE PF PW | FB | PA PB PD PE | | | | | 40 | | 4.4 | 37.8 | PA PB PD PE PF PW | ГБ | FAFDFDFE | | | | BU QL | 40 | 100 | 4.4 | 48.9 | PF PW | FC | | | | | | - | | | | | | DA DD DD DE | | | | BK | 40 | 140 | 4.4 | 60.0 | PA PB PD PE PF PW | FB | PA PB PD PE | | | | KH | 40 | 240 | 4.4 | 115.6 | PA PB PD PE PF PW | | PA PB PD PE | | | | KP | 42 | 92 | 5.6 | 33.3 | PA PB PD PE | | DA DD DD DE | | | | DU | 45 | 95 | 7.2 | 35.0 | PA PB PD PE | | PA PB PD PE | | | | DX | 50 | 100 | 10.0 | 37.8 | PA PB PD PE PF PW | ED | PA PB PD PE | | | | AH | 50 | 110 | 10.0 | 43.3 | PA PB PD PE | FB | PA PB PD PE | | | | ED | 50 | 120 | 10.0 | 48.9 | PA PB PD PE PF PW | FB FB NA | DA DD DD DE | | | | <u>V</u> | 50 | 150 | 10.0 | 65.6 | PA PB PD PE PF PW | FA FB NA | PA PB PD PE | | | | AV | 50 | 230 | 10.0 | 110.0 | PA PB PD PE PF PW | | PA PB PD PE | J | | | BF | 50 | 250 | 10.0 | 121.1 | PA PB PD PE PF PW | | PA PB PD PE PF PW | ET | | | AO | 50 | 300 | 10.0 | 148.9 | PA PB PD PE | | PA PB PD PE CA FA | | | | KF | 50 | 400 | 10.0 | 204.4 | PA PB PD PE | | PA PB PD PE | | | | D | 70 | 220 | 21.1 | 104.4 | PA PB PD PE PF PW | FB FC | PA PB PD PE | | | | E | 100 | 500 | 37.8 | 260.0 | PA PB PD PE PF PW | | PA PB PD PE | | | | ВН | 122 | 302 | 50.0 | 150.0 | PA PB PD PE | | PA PB PD PE | Т | | | BL | 200 | 500 | 93.3 | 260.0 | PA PB PD PE PF PW | | | K | | ^{*} Element codes (PA, PB, PD, PE, etc.) are defined in the Resistance/Temperature Tables on page 11-11 # Temptran™ Calibration & Accessories #### Special high-accuracy calibration Standard transmitters can be calibrated to the nominal resistance values of the RTD at the zero and span points. Total system error includes the tolerance of both the transmitter and the RTD sensor. If you order Minco Temptrans calibrated to the actual resistance of the RTD (traceable to NIST), this effectively eliminates the sensor tolerance from the system accuracy specifications. Temptrans match calibrated to a sensor are always ordered as assemblies. Common examples are shown in Section 1. ### Free NIST traceability With each matched sensor/transmitter set, Minco sends you calibration data traceable to the National Institute of Standards & Technology. This helps your process comply with ISO 9001 and other quality standards. #### Recalibration Minco prints RTD resistance values right on the Temptran label to simplify recalibration. You simply connect a resistance decade box or "RTD simulator" in place of the RTD, dial in the correct values, and adjust zero and span. Because Minco platinum RTDs are extremely stable in typical installations (0.1°C or better), you can trust the printed values for many years. RTD resistances are printed on Temptran labels for easy recalibration of zero and span. A standard Temptran shows nominal values. A specially calibrated Temptran shows – actual resistance of the serialized, connected RTD. # **Temptran Accessories** #### **DIN rail mounting** For easy installation in instrument cabinets. Adapters fit all Temptran models. Specify length when ordering rails. | Model | Description | | |-------|---------------------|--| | AC805 | DIN EN50022 Rail | | | AC807 | Adapter for EN50022 | | Temptrans mounted to DIN rail AC807 adapter for EN50022 #### **Dual mounting kits** The AC103528 mounting kit fits connection head models CH105, CH107, CH328, CH330,
CH342, CH343, CH357, CH358, CH405 and CH407. It holds two miniature Temptrans in a single head for use with dual RTDs. Use AC103133 for connection head models CH104, CH106 and CH306, and CH356. CH106, CH306 and CH356 also require AC103625 connection head modification. **▼**= STANDARD OPTIONS # Loop, powered Indicators AC102765 Pipe Mounting Hardware Kit TI350 Indicator #### Overview The display range is field programmable via coarse dip switches and two fine adjustment potentiometers. Wiring is easy. Simply connect the indicator in series with the 4 to 20 mA loop. Forward voltage drop is only 2.8 VDC. - Local indication of process variable for convenient visual verification - Enclosures are sealed from harsh environments to enhance product reliability and longevity - Variety of mounting options allows for flexible and easy installation - Compatible with 4 to 20 mA temperature transmitters for easy sensor interchangeability - IP66 NEMA 4X/7 rated (only for TI196) #### TI196 head-mounted indicator The TI196 includes an explosion proof connection head and digital indicator for local indication of temperature. Sensors and transmitters are specified separately. Optional Temptran models TT111, TT211 or TT205 will fit inside the connection head along with the meter. # TI196 Hazardous Area Certification (explosionproof/flameproof): Class I, Div I, Groups B,C and D Class II, Div I, Groups E,F and G Class III Ex d IIC #### TI350 indicator The TI350 features a washdown compatible digital readout for local indication of temperature. Sensors and transmitters are specified separately. Optional Temptran model TT321 will fit inside the case along with the meter. Other 4 to 20 mA transmitters may be mounted outside the case and used with this device. - NEMA 4X enclosure - Cable glands are installed for 0.118" to 0.256" (3mm to 6.5mm) cable #### AC102765 pipe mounting hardware kit Use AC102765 for mounting TI196 or TI350 to vertical or horizontal pipe. Kit includes plate, stainless U-bolts, nuts and washers for 2" schedule 40 pipe [Ø 2.375" (60mm)]. Order model number AC102765 **▼**= STANDARD OPTIONS # Loop, powered Indicators #### TI196 head-mounted indicator #### **Specifications** Input: 4 to 20 mA DC series connection Range: User adjustable. Zero: -500 to +1000 counts. Span: 10 to 2000 counts. **Accuracy:** \pm (0.1% reading + 1 count). **Temperature Coefficient:** Zero: ± 0.075 counts/°C typ. Span: \pm 0.005% of span/°C typ. **Linearity:** \pm (0.1% of span + 1 count). Forward Voltage Drop: 2.8 volts DC maximum. Display: 0.59" (15mm) high, 3-1/2 digit LCD, with °C/°F descriptor. Display Update: 3 times per second. Underrange Indication: -1 in MSD (Most Significant Digit). Overrange Indication: 1 in MSD. Connections: Terminal Block, Pluggable **Decimal:** User programmable to 1 position or absent (i.e. 1XX.X or 1XXX). **Ambient Temperature Range:** Operating: 32 to 122°F (0 to 50°C). Storage: -4 to 149°F (-20 to 65°C). Weight: 50 oz. (1420 g.) Enclosure: Aluminum, polyester-coated Enclosure Rating: NEMA 4X, IP66 Dimensions (connection head): 4.5" W x 4.5" H x 3.4" D (144 mm W x 114 mm H x 87 mm D). #### TI196 specification and order options | TI196 | Model number Tl196 | | | |--------------------------------------|---|--|--| | P3 | Pipe thread size: P2 = 3/4 - 14 NPT (sensor and conduit) P3 = 1/2 - 14 NPT (sensor and conduit) | | | | (0/100) | Temperature range:
(4 mA temp./20 mA temp.), user adjustable | | | | С | Display:
C = Celsius
F = Fahrenheit | | | | TI196P3(0/100)C = Sample part number | | | | Note: Sensors and transmitters are specified separately. #### TI350 indicator #### **Specifications** Input: 4 to 20 mA DC series connection Range: User adjustable. Zero: -500 to +1000 counts. Span: 10 to 2000 counts. Accuracy: \pm (0.1% reading + 1 count). **Temperature Coefficient:** Zero: ± 0.075 counts/°C typ. Span: ± 0.005% of span/°C typ. Linearity: \pm (0.1% of span + 1 count). Forward Voltage Drop: 2.8 volts DC maximum. Display: 0.59" (15mm) high, 3-1/2 digit LCD, with °C/°F descriptor. Display Update: 3 times per second. Underrange Indication: -1 in MSD (Most Significant Digit). Overrange Indication: 1 in MSD. Connections: Terminal Block, Pluggable Decimal: User programmable to 1 position or absent (i.e. 1XX.X or 1XXX). **Ambient Temperature Range:** Operating: 32 to 122°F (0 to 50°C). Storage: -4 to 149°F (-20 to 65°C). Weight: 7 oz. (200 g). Enclosure: Polycarbonate, NEMA 4X. Dimensions (box only): 2.6" W x 4.5" L x 2.2" D (65 mm W x 115 mm H x 56 mm D). #### TI350 specification and order options | TI350 | Model number TI350 | | | |------------------------------------|---|--|--| | (0/100) | Temperature range:
(4 mA temp./20 mA temp.), user adjustable | | | | С | Display:
C = Celsius
F = Fahrenheit | | | | TI350(0/100)C = Sample part number | | | | Note: Sensors and transmitters are specified separately. # CT224 12, Channel Temperature Alarm/Monitor #### Overview The CT224 consists of a 12-Channel temperature monitor/ over-temperature alarm and MincoSoft™ CT224 Software. It is the next generation in temperature monitoring equipment from Minco designed to meet the needs of electric machinery protection. The 12-channel scanning capability, standard RS485/RS232 interface and Windows-compatible software utility for system configuration and data logging provide over-temperature and under-temperature protection and critical feedback to safeguard expensive machinery. - UL and cUL recognized to help meet regulatory compliance - PC programmable with Windows compatible software makes monitoring easy and efficient, allowing quick reprogramming and extensive data logging - Mix and match sensor input types for freedom to adapt to pre-installed bearing and apparatus sensors - Ability to monitor 12 inputs allows you to monitor stator sensors from two motors - Five outputs, relays or logic offers either internal relay trips or flexibility of external control - Logic outputs can be used with external SSRs - Prevent costly damage to motors, generators, transformers, and other equipment - Power loss protection - 24 independent trip points (2 per channel) - Programmable deadband (hysteresis) - Rugged steel enclosure - · Can be used as a 4-channel on/off controller - Display High, Low, or Any valid zones - · Self-calibrating ### **Applications** - Generators - Motors - Turbines - Compressors - Pumps #### Software MincoSoft™ CT224 software features: - Compatibility with Microsoft® Windows® operating system - User-friendly configuration program - Save unlimited set-up configurations - Commission mode to test configurations before implementation - Continuously displayed measurement and relay status of all 12 channels - · Data-logging # CT224 12, Channel Temperature Alarm/Monitor ### **Specifications** **Input:** 1 to 12 RTDs (2 or 3-wire), thermocouples, or 4 to 20 mA current loops. Accepts any combination of input types. #### **Standard Input types:** RTD: -200 to 700°C: PA (Platinum / 100 Ω / 0.00392 Ω/Ω /°C) -200 to 700°C: PB (Platinum / 100 Ω / 0.00391 $\Omega/\Omega/^{\circ}\text{C})$ -200 to 850°C: PD/PE (Platinum / 100 Ω / 0.00385 Ω/Ω /°C) -200 to 600°C: PF (Platinum / 1000 Ω / 0.00385 Ω/Ω /°C) -80 to 260°C: NA (Nickel / 120 Ω / 0.00672 Ω/Ω /°C) -100 to 260°C: CA (Copper / 10 Ω / 0.00427 Ω/Ω /°C) #### Thermocouple: -270 to 1000°C: Type E -270 to 1150°C: Type K -200 to 1200°C: Type J -270 to 400°C: Type T **4 to 20 mA current loop:** Pressure (PSI, Bar), Humidity (%), Temperature (°F, °C), Vibration (G), and process variable (mA, VDC) Note: 4 to 20 mA inputs must be linear with respect to the measured variable. Input scan rate: 1.5 seconds maximum to scan all 12 channels. **Input fault detection:** Options for ignoring, sounding alarm, or tripping relays associated with the failed sensor. Other zones are unaffected. **Output:** 24 independent trip points (2 per channel): 5 relays, one relay is intended for use as an alarm function (but can be configured as a trip point), and one internal audible alarm. Alarm may be programmed to sound when selected relays trip. Logic output option is available for controlling external SSRs or sending a signal to another device. **Relays:** Form C, SPDT 10 A @ 250 VAC/24 VDC resistive load; 10 A make current; 2500 VA breaking capacity, ½ HP at 120 VAC motor load. **Trip point hysteresis (deadband):** Programmable from 0 to 20 (°C or °F). **Display:** 20 x 4 line backlit LCD. 0.1°C or 0.1°F resolution. Front panel LEDs indicate relay and alarm status. **Accuracy:** 2°C (3°F) in 0 to 60°C (32 to 140°F) ambient, over entire range of the input. **Supply power:** 85 to 240 VAC @ 50/60 Hz. or 110 to 250 VDC, 5 watts max.; or 18 to 36 VDC, 6 watts max. Keyboard: 4 membrane type keys with audible feedback. Serial interface: RS485 or RS232 (Modbus protocol). **Power loss protection:** Trip points and program parameters stored in non-volatile memory. Normal operation resumes when power is restored. **Programming:** Programmable from front panel or via RS485 or RS232 interface using Modbus protocol. PC software is included for data logging, commissioning, and configuration. Program settings may be password protected. **Firmware fault protection:** Watchdog resets microprocessor if it fails to perform program sequence. Enclosure: Steel case; NEMA 4 front panel. Ambient temperature rating: 0 to 60°C (32 to 140°F). Connections: Terminal blocks at rear accept wires to AWG 12. Leadwire resistance compensation: Up to 30 Ω per leadwire for RTDs with no effect on reading. Dimensions: 7.5 x 11.5 x 2" (191 x 292 x 51 mm). **Mounting:** Panel mount enclosure. Cutout size of 6.8" x 10.6" (173 x 269 mm). (175 X 205 11111). Weight: 3.8
lbs. (1.72 kg.). Approvals: UL 508, CSA C22.2 No. 14-M91. #### **Accessories** **AC102734:** Communication package. Includes isolated RS232 to RS485 converter and power supply. ### Specification and order options | CT224 | Model number | | | | | | |---------|--|--|--|--|--|--| | Α | Power supply | | | | | | | | A: 85-240 VAC @ 50/60 Hz / 110-250 VDC | | | | | | | | B: 18-36 VDC | | | | | | | 1 | Output | | | | | | | | 1: Relays | | | | | | | | 2: Logic (5 VDC) | | | | | | | Α | Interface | | | | | | | | A: RS232 | | | | | | | | B: RS485 | | | | | | | CT224A1 | CT224A1A = Sample part number | | | | | | # CT424 Temperature Alarm/Monitor ### User-programmable three input temperature monitor system #### Overview Minco's CT424 consists of a 3-channel temperature monitor and alarm system that controls three relay outputs based on user-programmable set points to help safeguard expensive machinery. #### **Features** The CT424 offers users a completely programmable monitor and alarm with improved measurement range and universal inputs. The microprocessor-based design maintains accuracy over a wide range of temperatures and conducts regular self-checks to ensure correct operation. Additionally, one of the relay outputs is specifically designed for control of a cooling fan, and the user-configurable fan exercise option extends the fan life and reduces bearing lock-up. Other key features include: - Universal inputs of 100 and 1000 $3\!\!\!/\,$ platinum RTDs and Types E and K thermocouples - Configurable through the front-panel interface, MODBUS over USB or the isolated RS-485, PC software included for data logging and configuration - User-configurable measurement range to Celsius or Fahrenheit scale - Large, dimmable 7-digit LED display allows easy programming and visibility at various distances and lighting conditions - Dual password design allows certain users to have full configuration access and others, set points only - Non-volatile memory storage of per-channel min/max temperatures for recall in the event of power-loss - Electrically isolated 4-20mA output signal allows for connection to PLCs or remote displays - UL/cUL recognition (CT424A and CT424B) and CE certification (CT424A) #### **Applications** Minco's CT424 temperature monitor and alarm is designed with the specifications for dry-type transformer monitoring }and protection. Additional applications include use in pumps, compressors and motors. #### Specification and order options | CT424 | Model number | |--------|----------------------| | CT424A | AC power, 120-240VAC | | | 50-60Hz, 120-240VDC | | CT424B | DC power: 21-36VDC | **▼**= STANDARD OPTIONS # CT424 Temperature Alarm/Monitor ## **Technical Specifications** | | Measurement Range | -50°C to 300°C (-58°F to 572°F), 1°C resolution,
2°C full-range accuracy | | |-------------|--|--|--| | | Relay Contact Ratings | Voltage: 240V AC Fan Relay: 30A or 1.5HP @ 55°C, derates to 22A or 1.5HP @ 72°C Trip/Alarm Relays: 10A | | | Performance | Current Loop Outputs Isolated, industry-standard 4-20mA current-loop output for forwarding of reading to PLC or remote indicator. | Configuration: high value, low value, specific channel selection. Scaling: Offset from -50°C to 250°C, span from 50°C to 350°C Error signaling: 3.5mA or 23mA output during sensor failure. Power: isolated loop power -or-non-isolated self-power | | | | Communications | MODBUS over USB or isolated RS-485, RTU, 300-38400bps | | | | Certifications | UL/cUL recognized (CT424A and CT424B) and CE certification (CT424A) | | | Environment | Sensor Inputs
Note: "Universal" inputs are
standard and are electrically
isolated from control logic
and communications. | RTD: 100¾ or 1000¾ Platinum, 0.00385¾/¾/°CTCR, 2- or 3-wire connection, Open and shorted sensor detection Thermocouple: Type K or Type E thermocouple, open detection. | | | | Temperature Range | -30°C to 72°C (-22°F to 162°F), 95% humidity,
non-condensing | | | | Output Relays | Connection: terminal block, 30 AWG to
10 AWG wire | | | | User Interface | Display: LED, 7-segment, red, 0.56" height,
dimmable
Indicators: LED, red: Fan, Trip, Alarm, Peak,
Manual Fan, Test | | | Mechanical | Dimensions | Front-panel: 6.3" x 9.9"
Cut-out: 5.67" x9.17"
Depth: 1.9" | | | | Enclosure | Metal, corrosion-resistant | | # CT325 Miniature DC Temperature Controller The CT325 Miniature DC Temperature Controller is designed for use with Minco Thermofoil™ heaters and RTD or thermistor sensors. It offers inexpensive on/off temperature control of your process or equipment with accuracy many times better than bimetal thermostats. Easily read and adjust the set point temperature using a voltmeter, then monitor the actual signal temperature at the other end. Operating from your 4.75 to 60 volt DC power supply, the controller can switch up to 4 amps power to the heater. A bright LED indicates when power is applied to the heater. The entire unit is epoxy filled for moisture resistance, with a through-hole for a mounting bolt. A terminal block provides the power input, sensor input and heater output connections. - Tight control in a small package means that enclosures or panel spaces are not required which allows successful portable device implementation - Simple control without complicated programming can reduce set-up time - Three-wire RTD connection cancels lead resistance for highly accurate temperature readings - Solid state on-off control with adjustable set point improves durability compared to electro-mechanical devices - Flexible heating control compliments all Minco Thermofoil™ Heaters for convenient off the shelf operation - Uses standard 100 \forall or 1000 \forall platinum RTD or 50 k \forall thermistor sensor input - Single DC power source provides power to the controller and heater up to 240 watts #### **Applications** - IV solutions for medical/surgical applications - Military batteries - Enclosures to maintain the temperature of electronics - Ruggedized laptop LCDs and hardrives #### **Custom design options** Minco can customize the design of the CT325 for special applications. Specific temperature ranges, other sensor options, and special packaging are possible for volume OEM applications. #### **Specifications** **Input:** 100 \forall or 1000 \forall platinum RTD, 0.00385 \forall / \forall /°C, 2 or 3-leads, or 50 k \forall NTC thermistor, 2-lead. **Setpoint range:** 2 to 200°C (36 to 392°F) for platinum RTD input. 25 to 75°C (77 to 167°F) for thermistor input. Consult factory for other ranges. Setpoint stability: ±0.02% of span/°C. V_{temp} signal: 0.010 V/°C over specified range. | , | • | | | | | |--------------|---------------|-------------------|-------------|--|--| | Platinum RTD | sensor | Thermistor sensor | | | | | 2°C | 0.02 V | 25°C | 0.25 V | | | | 50°C | 0.50 V | 50°C | 0.50 V | | | | 100°C | 1.00 V | 75°C | 0.75 V | | | | 200°C | 2.00 V | | | | | | Accuracy: ± | 1% of span | Accuracy: | £2% of span | | | | Linearity: ± | -0.1% of span | Linearity: | ±2% of span | | | **Deadband:** ± 0.1 °C (0.2°F). **Input power:** 4.75 to 60 VDC. Output: Open drain, 4 amps max. DC. **Leadwire compensation:** (3-wire RTD) ± 0.06 °C/ \forall for 100 \forall or 1000 \forall platinum up to 25 \forall per leg. **Fault protection:** Heater disabled on RTD short or thermistor open. No heater protection; external fuse is recommended. Operating ambient temperature range: -40 to 70°C (-40 to 158°F). Relative humidity: 0 to 95% non-condensing. **Physical:** Polycarbonate case, epoxy sealed for moisture resistance. Weight: 1 oz. (28g). Connections: Terminal block for wires AWG 22 to AWG 14. **Mounting:** Mounting hole for #6 screw through or #8 thread forming screw. # CT325 Miniature DC Temperature Controller | Sensor type | | |----------------------------------|----| | 100∀ platinum RTD (0.00385 TCR) | PD | | 1000∀ platinum RTD (0.00385 TCR) | PF | | 50 k∀ thermistor R25/R125 = 31.2 | TF | Note: 50kW thermistor sensor TS665TF is available on page 9-6 ### Specification and order options | CT325 | Model number | | | | |---------------------------------|---|--|--|--| | PD | Sensor type from table | | | | | 1 | Power supply:
1 = 4.75 to 10 VDC
2 = 7.5 to 60 VDC | | | | | С | Temperature range: A = 25 to 75°C (thermistor only) C = 2 to 200°C (RTD only) | | | | | 1 | Dead band: 1 = 0.1°C | | | | | CT325PD1C1 = Sample part number | | | | | ### Dimensions in inches (mm) ### Wiring diagrams ### **AC** powered heaters The CT325 can provide the control signal to an external solid state relay to switch AC power. Use a DC supply voltage suitable for both the CT325 and SSR. **▼**= STANDARD OPTIONS # CT335 PC Board Mount Temperature Controller #### Overview The CT335 is an OEM micro-processor based temperature controller that offers two sensor inputs, and two outputs. This low cost, PCB mount style proportional controller is great for system integration. The CT335 multiple output options make it more versatile than other temperature controllers. Option 1) one output capable of handling up to 6 Amps. Option 2) Two open drain outputs with 3 Amps each. Option 3) one open drain output that can handle up to 3 Amps and a logic output option to work with an external SSR for higher power. - Proportional and On/Off control - Two inputs and two outputs (solid state) - · Small package designed for PCB mounting - Able to handle up to 6 Amps - Operates on 7.5-60 volts DC - · Low cost #
Specifications #### **Sensor Inputs:** 100 \forall at 0°C Pt RTD, 2-leads (0.00385 TCR) 1000 \forall at 0°C Pt RTD, 2-leads (0.00385 TCR) #### **Output Options:** One output of 6A Two outputs of 3A each One 3A output and one logic output (0-5V) #### **Controlling Parameters:** Dead-band for On/Off Control: 0.1 to 10°C Proportional band for Proportional Control: 0.1 to 10°C #### Ambient: Operating temperature: -40 to 70°C (-40 to 158°F) Storage temperature: -55 to 85°C (-67 to 185°F) Relative humidity: 90%, non-condensing #### Accuracy: ±1° C System stability determined by overall system. Power supply: 7.5 to 60VDC **Physical:** ABS case, epoxy potted for moisture resistance Case Dimensions: 1.49x1.03x0.36" Mounting: Pins on 0.1" center for mounting on PCB #### AC207473 USB to SPI Converter Kit: The AC207473 allows the user to configure the CT335 from a PC. It is ideal for prototyping and early-stage development. It consists of a CT335 USB to SPI converter, power supply, USB cable, and software CD for easy user interface. ### Operation The CT335 controller can be configured to On/Off or Proportional control. On/Off control offers faster reaction time and better accuracy over thermostats. The CT335 Proportional control minimizes temperature overshoot and gives steadier temperature control by reducing the time the heater/load stays on as the process temperature approaches the set-point. Note that actual outputs depend on the system's configuration and controlling parameters. See below. #### On/Off Control #### **Proportional Control** # CT335 PC Board Mount Temperature Controller ## **Wiring with Different Output Options:** #### Option 1: One output of 6A ### Option 2: Two outputs of 3A each ### Option 3: One 3A output and one logic output (0-5V) ### Specifications and order options | CT335 | Model Number: CT335 | |-------------|---------------------------------------| | PD | Sensor Types: | | | PD = 100∀ Platinum RTD (-40 to 200°C) | | | PF = 1000∀ Platinum RTD | | 1 | Output Options: | | | 1. one output of 6A | | | 2. two outputs of 3A | | | 3. one 3A output and 1 logic output | | Р | Control Method: | | | O = On/Off | | | P = Proportional | | 10 | Dead-band or Proportional Band | | | 1 = 0.1° C | | | 10 = 1.0° C | | | 100 = 10.0° C | | T100 | Setpoint Temperature | | | (Min = - 40°C, Max = 200°C): | | | XXXX = Setpoint in 0.1°C increments | | | Example: 100 = 10.0°C | | | 103 = 10.3°C | | | -200 = -20.0°C | | CT335PD1T10 | 0 = Sample part number | ## **Dimensions** **▼**= STANDARD OPTIONS # CT435 PC Board Mount Temperature Controller ### **Programmable Multi-input/output Controller** #### Overview The CT435 is an OEM micro-processor based PID temperature controller that offers two independent sensor inputs and two outputs. This low cost, PCB mount style PID controller is very flexible through its many configuration options. Using the UART Modbus interface, system parameters, sensor temperatures, and output status may be read and/or written, allowing for complete system integration with existing micro-processors. - Two RTD temperature sensor inputs Pt100 or Pt1000 - Wide temperature sensing range - All controller features are configurable through the UART Modbus interface - Two independent solid state open drain outputs 3A each - Each output individually configurable for any variation of PID, On/Off, or Alarm control - Auto-tune feature estimates PID coefficients for several control types - 32-bit microprocessor executes both PID loops simultaneously at individually configurable rates up to 25 times/second - Addressable Modbus protocol allows for multiple units connected on one set of UART lines - · No additional heat sinking required - · Small package designed for PCB mounting - Operates from a 5V supply - · Low cost ### **Specifications** #### **Sensor Inputs:** 100 ∀ at 0°C Pt RTD, 2-leads (0.00385 TCR) 1000 ∀ at 0°C Pt RTD, 2-leads (0.00385 TCR) 2-wire connection Open and shorted sensor detection ### Measurement Range: -70°C to 650°C (-94°C to1202°F), 0.25°C full-range accuracy at 25°C ambient #### Accuracy: 25°C ambient: ± 0.25 ° C or ± 0.25 % of range Full range ambient: ± 1.5 ° C or ± 1 % of range System stability determined by overall system. #### **Electrical:** Input power: 5 to 24VDC, 20mA typical, 40mA max Outputs: 2 open drain outputs, 60V max switching voltage | Number of | Controller | Ambient | Current | | |----------------|----------------|-------------|---------|--| | Outputs in Use | Supply Voltage | Temperature | Rating | | | 1 Output | 5-12 VDC | 25°C | 7 A | | | | | 70°C | 4 A | | | | 12-24 VDC | 25°C | 6 A | | | | | 70°C | 3 A | | | 2 Outputs | 5-12 VDC | 25°C | 5 A | | | | | 70°C | 3 A | | | | 12-24 VDC | 25°C | 5 A | | | | | 70°C | 2.5 A | | #### **Environmental:** Operating temperature: -40 to 70°C (-40 to 158°F) Storage temperature: -55 to 85°C (-67 to 185°F) Relative humidity: 90%, non-condensing #### Communication: Modbus over UART – 19.2kbps, no flow control #### Package: Enclosure: ABS case, epoxy potted Dimensions: 1.49x1.03x0.36" Mounting: Pins on 0.1" center for mounting on PCB # CT435 PC Board Mount Temperature Controller #### Operation: The CT435 controller can be configured to PID (and any variation) or On/Off control. On/Off control offers faster reaction time and better accuracy over thermostats. PID control minimizes temperature overshoot and gives steadier temperature control by utilizing proportional, integral, and derivative control factors. The inputs and outputs may be configured in any fashion, and all parameters are read/write through the addressable UART Modbus interface. The controller and heaters may be powered from the same supply or separate supplies, as long as they share a common ground. ## **Common Wiring Diagram:** #### **Dimensions:** #### How to Order: | CT435 | Model number | | | | |------------------------------|---|--|--|--| | PD | Sensor Types:
PD = 100 ∀ Platinum RTD
PF= 1000 ∀ Platinum RTD | | | | | CT435PD = Sample part number | | | | | **▼**= STANDARD OPTIONS # CT15 Temperature Controller & Alarm #### Overview The CT15 is an easy-to-use controller with sophisticated PID control. It can also be a single or 2-stage alarm (using alarm feature plus control relay) to monitor motors and generators for overheating. - RTD or thermocouple input - Control modes: Self-Tune, pre-set or programmable PID, or On/Off - Bright red LED display - Ramp to setpoint - Digital sensor input correction - Digital input filter adjustable for noisy or jittery processes - · Four security levels - Setpoint limits - · Non-volatile memory needs no battery backup - · Input fault timer - Alarms at one or two temperatures - Alarm Relay option is programmable for high, low, absolute, or deviation, can be reset manually or automatically, and controls a single electromechanical relay with voltage-free contacts ### **Specifications** #### Selectable inputs: RTD: 2 or 3-wire, Minco types PD or PE (100 \forall EN60751 platinum). Thermocouple: Type J (factory default), K, T (selectable). #### Input impedance: Thermocouple: 3 megohms minimum. RTD current: 200 #A maximum. **Sensor break or short protection:** De-energizes control outputs to protect system. **Loop break protection:** Error message is initiated and output is turned off in case of shorted sensor or open heater circuit. Break time adjustable from OFF to 99 minutes. Cycle rate: 1to 80 seconds. **Setpoint range:** Selectable from -212 to 1371°C (-350 to 2500°F), input dependent. **Display:** One 4 digit, 7 segment, 0.3" high LED. Display shows the measured temperature unless a control key is pressed, then it will display the item value. **Control action:** Reverse (usually heating) or Direct (usually cooling), selectable. Ramp/Soak: One ramp, 0 to 100 hours. **▼**= STANDARD OPTIONS # CT15 Temperature Controller & Alarm ### Specifications continued Accuracy: ±0.25% of span ±1 count. Resolution: 1° or 0.1°, selectable. Line voltage stability: ±0.05% over supply voltage range. Temperature stability: $4 \#V/^{\circ}C$ (2.3 $\#V/^{\circ}F$) typical, $8 \#V/^{\circ}C$ (4.5 $\#V/^{\circ}F$) max. (100 ppm/ $^{\circ}C$ typical, 200 ppm/ $^{\circ}C$ max.). **Isolation:** Relay and SSR outputs are isolated. Pulsed voltage output must not share a common ground with the input. **Supply voltage:** 100 to 240 VAC nom., +10/-15%, 50 to 400 Hz, single phase; 132 to 240 VDC, nom., +10/-20%. 5 VA maximum. *Note:* Do not confuse controller power with heater power. The controller does not supply power to the heater, but only acts as a switch. For example, the controller could be powered by 115 VAC, but controlling 12 VDC to the heater. Operating temperature range: -10 to 55°C (14 to 131°F). Memory backup: Non-volatile memory (no batteries required). #### **Control output ratings:** AC SSR (SPST): 3.5 A @ 250 VAC @ 25°C (77°F); derates to 1.25 A @ 55°C (131°F). Minimum 48 VAC and 100mA required. An SSR is recommended for longer life than a mechanical relay. Switched voltage (non-isolated): 5 VDC @ 25 mA. Mechanical relay, SPST Form A (Normally Open): 3 A resistive, 1.5 A inductive @ 250 VAC; pilot duty: 250 VA; 2 A @ 125 VAC or 1 A @ 250 VAC. Alarm relay, SPST Form A (Normally Open): 3 A resistive, 1.5 A inductive @ 250 VAC; pilot duty: 250 VA; 2 A @ 125 VAC or 1 A @ 250 VAC. Weight: 227g (8 oz.). Agency approvals: UL & CSA. Front panel rating: Type 4X (IP66). ### Specification and order options | CT15 | Model number | | | | | |---------|--|--|--|--|--| | 1 | Alarm:
0 = No
1 = Yes | | | | | | 2 | Input:
1 = J, K, or T thermocouple
2 = 100 ∀ platinum RTD, type PD or PE | | | | | | 1 | Output: 1 = Built-in AC SSR 2 = Pulsed voltage (5 VDC) 3 = Mechanical relay | | | | | | CT15121 | CT15121 = Sample part number | | | | | Note: See page 4-37 for controller
accessories. #### Dimensions shown in inches (mm) PANEL CUTOUT: 1.775" × 1.775" (45 mm × 45 mm) MAXIMUM PANEL THICKNESS: 0.25" (6.35 mm) DIMENSIONS IN INCHES (mm) # CT16A Temperature Controller #### Overview This economical controller packs sophisticated PID control into a compact ¹/¹6 DIN enclosure. A wide range of control modes, sensor input types, and relay or SSR outputs give versatile control of Thermofoil™ heaters and lets you easily connect to other electronics. - Dual displays continuously show the set point and the actual temperature reading in resolutions of 1°, 0.1°, or engineering units - Universal Input fits any sensor: Select from 10 thermocouple types, 4 RTD types, voltage, and current signals - · Isolated Outputs for safe, easy wiring - · Loop Break protection handles sensor or heater failure - Peak / Valley records the maximum and minimum temperatures - Front panel is waterproof and corrosion-resistant, making it ideal for sanitary applications. Illuminated keypad for easy operation - Limit the temperatures which the operator can set via four password-protected Security Levels - Controller can Self-Tune for best PID control - Control modes: Self-Tune, pre-set or adjustable PID values, simple On/Off control, and open loop - Fuzzy Logic provides better response time and reduces overshoot in processes with unpredictable inputs - Alarms at one or two temperatures - Alarm Relay option is programmable for high, low, absolute, or deviation, can be reset manually or automatically, and controls a single electromechanical relay with voltage-free contacts - Ramp & Soak option handles complex heating profiles of 16 segments with front-panel activation and a selectable time base (CT16A3) - Auto / Manual option easily switches to manual control for set up or experiments (CT16A3) - RS-232 or RS-485 Serial Communications access the temperature readings and all control parameters (optional) - Retransmit either the sensed temperature or the set point as a voltage or current signal to a computer or recorder (optional) - 4-Stage Set Point to quickly switch from one temperature to the next (optional) ### **Specifications** #### Selectable inputs: RTD: 2 or 3-wire, Minco types PD or PE (100 \forall EN60751 platinum), PA (100 \forall NIST platinum), PF (1000 \forall EN60751 platinum), or NA (120 \forall Nickel). Thermocouple: Type J (factory default), K, T, L, E, R, S, B, C, or N. DC current: 0-20 mA or 4-20 mA (use with Temptran[™] transmitters). DC voltage: 0-10 or 2-10 VDC, -10 to 10 mVDC, scalable. #### Input impedance: Voltage: 5000 \forall . Thermocouple: 3 megohms minimum. Current: 10 \forall . RTD current: 200 #A. # CT16A Temperature Controller #### Specifications continued #### Sensor break or short protection: Selectable output: disabled, average output before fault, or preprogrammed output. Adjustable delay: 0.0 to 540.0 minutes. **Loop break protection:** Error message is initiated and output is turned off in case of shorted sensor or open heater circuit. Break time adjustable from OFF to 9999 seconds. Cycle rate: 1 to 80 seconds. **Setpoint range:** Selectable from -212 to 2320°C (-350 to 4208°F), input dependent. Displays: Two, 4 digit, 7 segment, 0.3" high LEDs. Process Value red, Setpoint Value green. °C or °F. **Control action:** Reverse (usually heating) or Direct (usually cooling), selectable. Ramp/soak: (CT16A3 only) 16 separate ramp and soak times are adjustable in minutes or seconds from 0 to 9999. When the program has ended, you may choose to repeat, hold, revert to local setpoint, or turn the outputs off. Accuracy: ±0.25% of span ±1 count. Resolution: 1° or 0.1°, selectable. Line voltage stability: ±0.05% over supply voltage range. Temperature stability: 4 #V/°C (2.3 #V/°F) typical, 8 #V/°C (4.5 #V/°F) max. (100 ppm/°C typical, 200 ppm/°C max.). #### Isolation: Relay and SSR: 1500 VAC to all other inputs and outputs. SP1 and SP2 current and voltage: 500 VAC to all other inputs and outputs, but not isolated from each other. Process output (options 934, 936): 500 VAC to all other inputs. Process output (options 934, 936): 500 VAC to all other inputs and outputs. **Supply voltage:** 100 to 240 VAC nom., +10/-15%, 50 to 400 Hz, single phase; 132 to 240 VDC, nom., +10/-20%. 5 VA maximum. *Note:* Do not confuse controller power with heater power. The controller does not supply power to the heater, but only acts as a switch. For example, the controller could be powered by 115 VAC, but controlling 12 VDC to the heater. #### Operating temperature range: -10 to 55°C (14 to 131°F). Memory backup: Non-volatile memory (no batteries required). #### **Control output ratings:** AC SSR (SPST): 2.0 A combined outputs A & B @ 240 VAC @ 25°C (77°F); derates to 1.0 A @ 55°C (131°F). An SSR is recommended for longer life than a mechanical relay. Mechanical relay, SPST Form A (Normally Open) or Form B (Normally Closed): 3 A resistive, 1.5 A inductive @ 240 VAC; pilot duty: 240 VA; 2 A @ 120 VAC or 1 A @ 240 VAC. Switched voltage (isolated): 15 VDC @ 20 mA. Current (isolated): 0 to 20 mA, $600 \forall$ max. DC SSR: 1.75 A @ 32 VDC max. Alarm relay, SPST Form A (Normally Open): 3 A @ 240 VAC resistive; 1/10 HP @ 120 VAC. ### Specifications and order options | CT16A | Model number | |-----------|---| | 2 | Feature set: 2 = Standard 3 = Enhanced (ramp & soak, Auto/manual) | | 1 | Alarm relay:
0 = No
1 = Yes | | 1 | Output A: 1 = Built-in AC SSR 2 = Pulsed voltage (15 VDC) for external SSR 3 = Mechanical relay, SPST (normally open) 4 = Mechanical relay, SPST (normally closed) 5 = Current 8 = DC SSR | | 0 | Output B: 0 = None 1 = Built-in AC SSR 2 = Pulsed voltage (15 VDC) for external SSR 3 = Mechanical relay, SPST (normally open) 4 = Mechanical relay, SPST (normally closed) 5 = Current | | -948 | Options on next page (leave blank for none) | | CT16A2110 | 0-948 = Sample part number | See page 4-37 for Accessories. ▼= STANDARD OPTIONS # CT16A, Options and Accessories ### Dimensions shown in inches (mm) PANEL CUTOUT: $1.775" \times 1.775"$ (45 mm \times 45 mm) MAXIMUM PANEL THICKNESS: 0.25" (6.35 mm) ### Additional options for CT16A (board level) **934:** Analog retransmission of Process Variable or Set Variable: (4 to 20 mADC) For use as recorder, transmitter or computer A/D input. Linearized 4 to 20 mA DC signal follows the Process or Set variable. Scalable. **936:** Analog retransmission of Process Variable or Set Variable: (0 to 10 VDC) Similar to option 934, but output signal is linearized 0 to 10 VDC. **948: 4-Stage setpoint:** Four preset setpoints may be selected by external contacts. Each set point has its own set of PID values giving controller 4 distinct "recipes" for different process situations. **992: RS-485 Computer communication link:** Allows remote computer to read and write all control parameters. **993: RS-232 Computer communication link:** Allows remote computer to read and write all control parameters. #### Accessories for CT15 and CT16A AC744: 1-10 A, 24 to 280 VAC SSR AC745: 1-25 A, 24 to 280 VAC SSR AC746: 1-50 A, 24 to 280 VAC SSR AC1009: 1-20 A, 0 to 100 VDC SSR AC743: SSR heat sink for high current or ambient temperature AC996 R/C Snubber: Highly recommended to prolong relay contact life if using the mechanical relay or SSR output to drive a relay or solenoid. Also, for the CT16A AC SSR output, make sure that the coil HOLDING current is greater than 100 mA and voltage is minimum 48 VDC. **AC1001:** Steel 1/16 to $\frac{1}{4}$ DIN adapter plate. 127 x 127 mm gray steel with 45 x 45 mm centered hole. # CT425 Temperature Controller ## Versatile, configurable controller with Bluetooth option Minco's CT425 Temperature Controller provides simple, yet quick customization for most controller applications. The CT425 Temperature Controller features three user-configurable outputs, two programmable inputs, and communication via USB. Minco's CT425 Temperature Controller is a PID temperature controller capable of reading two independent temperature sensors (RTDs). By utilizing an internal solid state relay, logic voltage output, and internal mechanical relay, the controller is fully configurable. Simply connect the CT425 to a laptop or PC to configure. #### **Features** Flexible configuration for: #### Inputs: - Utilize one or two Platinum RTDs - Choose 100 or 1000 ohm RTDs (independently programmable) #### Outputs: - Utilize up to three outputs - Solid state relay - Logic voltage - Mechanical relay - · Choose control type - PID - On/Off (mechanical relay only) - Alarm - USB and a user-friendly software package allow for easy setup and use - 32-bit microprocessor executes both PID loops simultaneously at individually configurable rates up to 25 times/second - · High current capacity internal switching - Electrically isolated switching outputs increase high voltage safety - AC powered models perform zero-cross detection to reduce switching noise - LED indicators provide a quick confirmation of correct sensors input operation ## **Applications** The CT425 is designed for a variety of applications that include heating and cooling of equipment or processes. The CT425's versatility makes it ideal to use as an off-the-shelf prototyping tool or as an economical controller for small to medium volume applications. Moreover, the CT425's modular design provides the platform for fast and cost-effective custom designs for medium to high volume applications. #### **Bluetooth option** The controller may be ordered with Bluetooth communication (Bluetooth Low Energy, Class 2). The Blutooth may be used to view real-time data and make basic setting changes. # CT425 Temperature Controller ## **Specifications** | CT425 Tempe | CT425 Temperature Controller | | | | | | | | | | |-------------
------------------------------|--|----------------------------|-----------------------|---------------|---------------|--|--|--|--| | | Measurement Range | -70°C to 650°C (-94°C to 1202°F), 0.25°C full-range accuracy at 25°C | | | | | | | | | | | | Model CT425A: 120VAC, 50-60Hz | | | | | | | | | | | Input Power | Model CT425B: 10.5-60VDC | | | | | | | | | | Performance | | Model CT425C: 240VAC, 50-60Hz | | | | | | | | | | Performance | | 100¾ or 1000¾ P | latinum, 0.00385 | 3/4/3/4/°CTCR, | | | | | | | | | Sensor Inputs (RTD) | 2-wire connection, | | | | | | | | | | | | Open and shorted sensor detection | | | | | | | | | | | Connections | 5mm spacing ter | 5mm spacing terminal block | | | | | | | | | | Output Ratings | Output | | Max Voltage | Current (25C) | Current (55C) | | | | | | | | 120VAC Solid State (CT425A) | | 120VAC | 6A | 5A | | | | | | | | DC Solid State (CT425B) | | 60VDC | 15A | 11A | | | | | | Environment | | 240VAC Solid State (CT425C) | | 240VAC | 3A | 2.5A | | | | | | | | Mechanical Relay | | 250VAC/30VDC | 10A resistive | | | | | | | | | Logic Voltage | | 4.4V, +/- 0.1V output | 26mA, +/- 3mA | | | | | | | | Temperature Range | -20°C to 55°C, 90° | % humidity, non- | condensina | | | | | | | | | Dimensions | 5.46" x 3.34" x 1.2 | | | | | | | | | | Mechanical | | | | | | | | | | | | meenamear | 3 | | 5 | | | | | | | | | Mechanical | Weight
Enclosure | 350 grams (12.3 ounces) UL 94V-0 ABS plastic with epoxy potting | | | | | | | | | ## **Ordering Information** To configure your temperature controller, select from the options listed below to determine the complete part number. | CT425 | Power Supply | | | |---|---|--|--| | CT425A | 120VAC power, 120 VAC solid state relay | | | | CT425B | 10.5–60VDC power, DC solid state relay | | | | CT425C | 240VAC power, 240 VAC solid state relay | | | | Additional Option:
-BT
Blank for none | Bluetooth Communication | | | | CT425A, CT425A-BT = Sample part number | | | | # ► SECTION 5: MINIATURE SENSORS - Embedment sensors install in bearings for over-temperature protection - Small, rugged RTDs and thermocouples withstand rough handling and harsh environments - Agency approved embedment sensors for hazardous areas - Bolt-on designs for easy installation #### **Section 5: Miniature Sensors** | Embedment RTDs | 5-2 | |----------------------------------|------------| | Embedment thermocouples | 5-3 | | Hazardous area embedment sensors | 5-4 to 5-6 | | Installation and accessories | 5-7 | | Bolt-on sensors | 5-8 | | Economy sensors | 5-9 | | Non-metallic case sensors | | # **Embedment RTDs** | Element | TCR
Ω/Ω/°C | Case style A Case L: 0.250" (6.4 mm) Case Ø: 0.275" (7.0 mm) | | Case L: 0.250" (6.4 mm) | | Case style C Case L: 0.300" (7.6 mm) Case Ø: 0.125" (3.2 mm) | | Case style D Case L: 0.300" (7.6 mm) Case Ø: 0.080" (2.0 mm) | | |---|---------------|--|-----------|-------------------------|-----------|--|-----------|--|------| | | | Single | Dual | Single | Dual | Single | Dual | Single | Dual | | Platinum, 100 Ω ±0.36% at 0°C | .00392 | S325PA,
S11636PA* | S4026PA | S331PA | S7792PA | S341PA | S14320PA | S12414PA | | | Platinum, 100 Ω ±0.12% at 0°C (Meets EN60751, Class B) | .00385 | S304PD | S309PD | S306PD | S14405PD | S308PD | S14455PD | ▼ S13282PD | | | Platinum, 100 Ω ±0.36% at 0°C | .00385 | S7304PE | S305PE | S7746PE | S307PE | S7908PE | S14456PE | S13282PE | | | Platinum, 1000 Ω ±0.12% at 0°C | .00385 | S101907PF | S101911PF | S101908PF | S101912PF | S101909PF | S101913PF | S101910PF | | | Copper, 10 Ω ±0.2% at 25°C | .00427 | S324CA | S4026CA | S332CA | | S342CA | | | | | Nickel, 120 Ω ±0.5% at 0°C | .00672 | S326NA,
S11636NA* | S4026NA | S330NA | S7792NA | S340NA | | | | *MIL-T-24388C qualified models #### Overview Install miniature sensors in or beneath the babbitt layer of bearing shoes. They monitor metal temperature — the most reliable indicator of bearing condition — to give early warning of oil film breakdown. Machines can then be shut down and the problem corrected before catastrophic failure occurs. While no larger than many bare ceramic elements, these RTDs have metal cases and insulated leads to withstand rough handling and harsh environments. They are easy to install in drilled holes for general purpose sensing. #### **Specifications** Temperature range: -50 to 260°C (-58 to 500°F). Case: Tin plated copper alloy. Models S12414, S13282 and S101910: Stainless steel. Babbitt tip: Factory applied babbitt tip, available on case style A or B, reduces the danger of overheating the sensor when installed in babbitt layer. Leads: Stranded copper with PTFE insulation; stainless steel overbraid optional (one sleeve covers all leads). Polyimide insulation available on selected models (See specification and order options). Leadwire size (AWG): style 2 24 24 24 28 28 24 26 30 30 30 Case Number of leads 24 24 24 30 34 Time constant: 3.0 seconds (case style A) to 1.5 seconds (case style D), typical value in moving water. ### Insulation resistance: 10 megohms min. at 100 VDC, leads to case. ### *MIL-T-24388C qualified models: PRT-EM-E2: Order S11636PA3K36B1. NRT-EM-E1: Order S11636NA3K36B1. **▼**= STANDARD OPTIONS Specifications subject to change ### Specification and order options | S331PA | Model number from table | |-----------|--| | 3 | Number of leads per sensing element (2, ▼3, or 4):
▼:3 CA or PD elements not available with 2 leads.
4 leads available on single elements and
S14405 only. | | S | Covering over leadwires: ▼T = PTFE insulated leads only ▼S = Stainless steel overbraid with PTFE insulated leads F = FEP over PTFE insulated leads R = FEP over stainless steel braid and PTFE insulated leads. E = FEP over stainless steel braid, with elastomer fill and PTFE insulated leads. (max fill length 240″) S11636 Covering options only: K = Polyimide insulated leads. S = Stainless steel overbraid with polyimide insulated leads. | | 120 | Lead length in inches: ▼120 | | (Stop her | e for case style C or D; no installation variable) | | AC1 | Optional Installation/Accessory option: B0 = No babbitt metal or accessories B1 = Babbitt metal applied AC1 = Supplied with AC171 spring and AC172 series ring (case style B only) AC2 = Supplied with AC171 spring and AC1038 ring (case style B only) AC3 = Supplied with AC171 spring and AC915-1 ring (case style B only) | | S331PA39 | S120AC1 = Sample part number | # **Embedment Thermocouples** | Leadwire | Case L: 0.250" (6.4 mm)
Case Ø: 0.275" (7.0 mm) | | Case style B Case L: 0.250" (6.4 mm) Case Ø: 0.188" (4.8 mm) Flange Ø: 0.250" (6.4 mm) | | Case L: 0.300" (7.6 mm)
Case Ø: 0.125" (3.2 mm) | | Case style D Case L: 0.300" (7.6 mm) Case Ø: 0.080" (2.0 mm) | | |---|--|--------|--|--------|--|--------|--|------| | | Single | Dual | Single | Dual | Single | Dual | Single | Dual | | AWG 20 stranded | TC311 | TC312 | TC333 | | | | | | | AWG 24 stranded | TC2162 | TC2303 | TC2084 | TC2096 | TC344 | TC2623 | | | | AWG 24 stranded with single SS braid over both wire pairs | | TC2698 | | TC2520 | | TC2837 | | | | AWG 30 solid | | | | | | | ▼TC2741 | | #### Overview These thermocouples are mechanically interchangeable with the RTDs on pages 6-2 and 6-3. ### **Specifications** Temperature range: -184 to 260°C (-300 to 500°F). Copper-Constantan (Type T): AWG 24: 200°C (392°F) maximum, AWG 30: 150°C (302°F) maximum. **Time constant:** Typical value in moving water: Grounded junction: 0.3 seconds. Ungrounded junction: 6 seconds (case style A) to 1 second (case style C). #### Specification and order options | TC311 | Model number from table | |---------|--| | Е | Junction type:▼ K = Chromel-Alumel▼ J = Iron-Constantan▼ K = Chromel-Alumel▼ T = Copper-Constantan | | U | Junction grounding:▼ G = Grounded▼U = Ungrounded | | 36 | Lead length in inches
▼: 48, 144 | | S | Covering over leadwires: T = PTFE insulated leads only ▼ S = Stainless steel overbraid with PTFE insulated leads F = FEP over PTFE insulated leads R = FEP over stainless steel braid and PTFE insulated leads E = FEP over stainless steel braid, with elastomer fill and PTFE insulated leads (max fill length 240") | | (Stop h | nere for case style C or D; no installation variable) | | ВО | Optional Installation/Accessory option: B0 = No babbitt metal or accessories B1 = Babbitt metal applied AC1 = Supplied with AC171 spring and AC172 series ring (case style B only) AC2 = Supplied with AC171 spring and AC1038 ring (case style B only) AC3 = Supplied with AC171 spring and
AC915-1 ring (case style B only) | | TC311I | EU36SB0 = Sample part number | **Insulation resistance:** 10 megohms min. at 100 VDC, leads to case, ungrounded junctions only. Case: Tin plated copper alloy. **Babbitt tip:** Factory applied babbitt tip, available on case styles A and B, reduces the danger of overheating the sensor when installed in babbitt layer. **Leads:** See table for sizes and options. Dual element models with AWG 24 stranded leadwires are available with a single stainless steel braid over all four wires. This option is recommended for use with integral feedthroughs. See below for more information. #### STOP OIL SEEPAGE! <u>Feedthroughs</u> provide an oil tight seal where a cable exits a machine housing. The stainless steel tube is epoxy filled and each wire is sealed to the individual conductor. This prevents wicking of oil inside the wires as well as leakage around the wire insulation. Pressure rating to 25 psi (1.7 bar.) See page 3-11 for details. Leadwire and cable seal models FG1015, FG3015 and FG4015 seal RTD or thermocouple leadwires where they exit oil-filled bearing housings of rotating equipment. Both versions include a grommet that provides the seal and allows adjustment of the wire or cable position. See page 3-12 for details. Elastomer rubber-filled cable has elastomer fill between the wires, stainless steel braid, and outer jacket. This fill can extend along the entire length of the cable, or a specified portion. The outside of the cable can be sealed with an FG1015, FG3015 and FG4015 fitting. See Leadwire Covering Options on Miniature Sensors on pages 6-2 to 6-10. For more information on the problems of oil seepage and various solutions, visit **www.minco.com** # Hazardous Area Embedment Sensors ## **Overview** Install miniature sensors in or beneath the babbitt layer of bearing shoes. They monitor metal temperature — the most reliable indicator of bearing condition — to give early warning of oil film breakdown. With predictive maintenance, machines can be shut down and the problem corrected before catastrophic failure occurs. While no larger than many bare ceramic elements, these RTDs have metal cases and insulated leads to withstand rough handling and harsh environments. They are easy to install in drilled holes for general purpose sensing. ### **Agency Certifications** Certified for use in hazardous areas to IECEx. ATEX. North America (CSAc-us), KCs (Korea), PESO (India), and CCC (China) requirements. These wide-ranging certifications allow users to cover many potential certification requirements with one sensor product, thus increasing flexibility and reducing inventory. For more information see the Certifications box to the right. ### **Specifications** Temperature range: -60°C to 200°C (-76°F to 392°F), Reducing to 180°C (356°F) for FEP jacket on cable options; Reducing to 125°C (257°F) for elastomer filled cable options; Reducing to -20°C to 149°C (-4°F to 300°F) for feedthrough options. Babbitt tip: Factory applied babbitt tip, available on case style A, reduces the danger of overheating the sensor when installed in babbitt laver. Time constant: 3.0 seconds (case style A) to 1.5 seconds (case style D), typical value in moving water. Insulation resistance: 10 megohms min. at 100 VDC, leads to case and to stainless steel braid and feedthrough cases when specified. Dielectric strength: 600 Volts RMS at 60 Hz for 2 seconds with a maximum leakage of 5mA, leads to case and to stainless steel braid and feedthrough cases when specified. **Lead wire colors** can be specified in part number make up per IEC 60751 or Minco standard lead wire conventions. Special options: Calibration data and tagging options are also available; contact Minco for details. # **Case Styles** Case #### **Specifications** Case Style A Case L: 0.250" (6.4 mm) #### Case Style B Case L: 0.250" (6.4 mm) Case Ø: 0.188" (4.8 mm) Flange Ø: 0.250" (6.4 mm) ### Case Style B Short Case L: 0.188" (4.8 mm) Case Ø: 0.188" (4.8 mm) Flange Ø: 0.250" (6.4 mm) Case L: 0.300" (7.6 mm) Case Ø: 0.125" (3.2 mm) Case L: 0.300" (7.6 mm) Case Ø: 0.080" (2.0 mm) ### Certifications IECEx (IEC 60079): Ex ia IIC Ga Ex eb IIC Gb Ex ic ec IIC Gc Korea (KOSHA Art. 84/Art. 110): Ex ia IIC Ga Ex eb IIC Gb Ex IC ec IIC Gc **SIL2** IEC 61508-2:2010 ATEX (EN 60079): ⟨x⟩ II 1 G Ex ia IIC Ga 🖾 II 3 G Ex ic ec IIC Gc CSA Canada (CSA C22.2): Ex ia IIC T6...T2 Ga Ex eb IIC T6...T2 Gb Ex ic ec IIC T6...T2 Gc IS CI I, Div 1, Grp ABCD T6... T2 Cl I, Div 2, Grp ABCD T6... T2 China (GB/T 3836): Ex ia IIC Ga Ex eb IIC Gb Ex ic ec IIC Gc India (Petroleum Rules 2002): Ex ia IIC Ga Ex eb IIC Gb Ex ic ec IIC Gc CSA US (NFPA 70 Art 500 & 505): Cl I, Zone O AEx ia IIC T6... T2 Ga Cl I, Zone 1, AEx eb IIC T6...T2 Gb Cl I, Zone 2, AEx ic ec IIC T6...T2 Gc IS Cl 1, Div 1, Grp ABCD T6...T2 Cl 1, Div 2, Grp ABCD T6...T2 # Hazardous Area Embedment Sensors # **RTD Sensing Element** | TO CONOMIS EXOMETED | | | | | | |---------------------|---|---------------|--|--|--| | Code | Element | TCR
Ω/Ω/°C | | | | | CA | Copper, 10 Ω ±0.2% (10.02/9.98) at 25°C | 0.00427 | | | | | NA | Nickel, 120 Ω ±0.5% (120.60/119.40) at 0°C | 0.00672 | | | | | NB | Nickel, 100 Ω ±0.22% (100.22/99.78) at 0°C (Meets Din 43760) | 0.00618 | | | | | PA | Platinum, 100 Ω ±0.36% (100.36/99.64) at 0°C | 0.00392 | | | | | PD | Platinum, 100 Ω ±0.12% (100.12/99.98) at 0°C (Meets EN60751, Class B) | 0.00385 | | | | | PE | Platinum, 100 Ω ±0.36% (100.36/99.64) at 0°C | 0.00385 | | | | | PF | Platinum, 1000 Ω ±0.12% (1001.2/998.8) at 0°C (Meets EN60751, Class B) | 0.00385 | | | | | PM | Platinum, 100 Ω ±0.06% (100.06/99.94) at 0°C (Meets EN60751, Class A) | 0.00385 | | | | | | Feedthrough Options | | | |------|--|--|--| | С | Feedthrough designator | | | | 36 | Feedthrough distance from sensor case in inches | | | | J | Feedthrough diameter code: H = .188" DIA (same as AC958) J = .215" DIA (same as AC717) M = .250" DIA (same as AC718) N = .375" DIA (same as AC961) | | | | 40 | Feedthrough length in .1" increments (40 = 4.0") (Standard lengths: 20, 25, 30, 35, 40, 45) | | | | Samp | Sample part number: S711PDZS72A1C36J40 | | | **Specifications and Options — RTD** | S7 | Model number | |-----------|--| | 1 | Number of RTD sensing elements: 1 = 1 sensing element (single) 2 = 2 sensing elements (dual) — no duals available in Case Style D, NA and NB duals also not available in Case Style A | | 1 | Case: 0 = Case Style A, copper alloy, tin plated 1 = Case Style B, copper alloy, tin plated 2 = Case Style C, copper alloy, nickel plated 3 = Case Style Short B, copper alloy, tin plated 4 = Case Style D, type 303 stainless steel | | PD | RTD sensing element:
CA, NA, NB, PA, PD, PE, PM or PF (from table on this page) | | Z | Number of leads and lead color*: Single Element Y = 2 leads, RW Z = 3 leads, RWW (Minco U.S. lead colors) W = 3 leads, WRR (IEC 60751 lead colors) X = 4 leads, RRWW Dual Element Y = 2 leads per element, RW/BIY (Minco U.S. lead colors) V = 2 leads per element, WR/YBk (IEC 60751 lead colors) Z = 3 leads per element, RW/BIYY (Minco U.S. lead colors) W = 3 leads per element, RWW/BIYY (Minco U.S. lead colors) X = 4 leads per element, RRWW/BIBIYY) (Minco U.S. lead colors) - only Case Style B U = 4 leads per element, WWRR/YYBkBk (IEC 60751 lead colors) - only Case Style B | | S | Leadwire configuration/covering: T = PTFE insulated leads only (no covering) F = FEP jacket over PTFE insulated leads S = Stainless steel braid over PTFE insulated leads R = FEP jacket over stainless steel braid and PTFE insulated leads E = FEP jacket over stainless steel braid and PTFE insulated leads, with elastomer f ll | | 72 | Lead length in inches | | A1 | Optiontional Installation/Accessories - skip for Case Styles C and D A1 = AC171 spring/AC172 series ring - Case Style B only A2 = AC171 spring/AC1038 rings (Qty of 2) - Case Style B only A3 = AC171 spring/AC915-1 ring - Case Style B only A4 = AC672 spring/AC172 series ring - Case style Short B only A5 = AC672 spring/AC1038 ring (Qty of 2) - Case style Short B only A6 = AC672 spring/AC915-1 ring - Case Style Short B only B0 = No babbitt or no accessory - Case Style A B0 = No accessory or feedthrough - Case Styles B and Short B B1 = Babbitt layer applied to case tip. 100" MIN - Case Style A only | ^{*}Lead wire color code: R = red, W - white, Bl = blue, Y = yellow, Bk = black # Hazardous Area Embedment Sensors # **Specifications and Options — Thermocouple** | | Feedthrough Options | | |---|--|--| | С | Feedthrough designator | | | 36 | Feedthrough distance from sensor case in inches | | | Н | Feedthrough diameter code: H = .188" DIA (same as AC958) J = .215" DIA (same as AC717) M = .250" DIA (same as AC718) N = .375" DIA (same as AC961) | | | 40 | Feedthrough length in .1" increments (40 = 4.0")
(Standard lengths: 20, 25, 30, 35, 40, 45) | | | Sample part number: TC711KUS120A1C36H40 | | | # Leadwire size (AWG) | Case
style | Number of leadwires | | | | | |--------------|---------------------|----|----|----|----| | | 2 | 3 | 4 | 6 | 8 | | RTD | | | | | | | Α | 24 | 24 | 24 | 24 | х | | В | 24 | 24 | 28 | 28 | 28 | | Short B | 24 | 26 | 28 | 30 | х | | С | 24 | 26 | 30 | 30 | х | | D | 30 | 30 | 34 | Х | х | | Thermocouple | | | | | | | A, B, C | 24 | Х | 24 | Х | х | | Short B | 24 | Х | 24 | Х | х | | D | 30 | Х | Х | Х | х | | TC7 | Specification | | | |-----|--|---|--| | 1 | Number of sensing elements: 1 = 1 sensing element (single) 2 = 2 sensing elements (dual) in one cable 3 = 2 sensing elements (dual) in two cables | | | | 1 | Case: 0 = Case Style A, copper alloy, tin plated 1 = Case Style B, copper alloy, tin plated 2 = Case Style C, copper alloy, nickel plated 3 = Case Style Short B, copper alloy, tin plated 4 = Case Style D, copper alloy, tin plated | | | | К | Junction type:
E = Chromel-Constantan
J = Iron-Constantan | K = Chromel-Alumel
T = Copper-Constantan | | | U | Thermocouple junctions: U = Ungrounded (insulated from cas G = Grounded (fused internally to ca | • | | | S | Leadwire covering: T = TFE insulated leads (wrapped and fused) F = FEP jacket over TFE insulated leads S = Stainless steel braid over TFE insulated leads R = FEP jacket over stainless steel braid and TFE insulated leads E = FEP jacket over stainless steel braid and TFE insulated leads, with elastomer fill | | | | 120 | Leadwire length | | | | A1 | Optional Installation/Accessories — leave blank for Case Styes C and D: A1 = AC171 spring/AC172 series ring - Case Style B only A2 = AC171 spring/AC1038 rings (Qty of 2) - Case Style B only A3 = AC171 spring/AC915-1 ring - Case Style B only A4 = AC672 spring/AC172 series ring - Case Style Short B only A5 = AC672 spring/AC1038 ring (Qty of 2) - Case Style Short B only A6 = AC672 spring/AC915-1 ring - Case Style Short B only B0 = No babbitt, no accessory - Case Style A only B0 = No accessory or feedthrough - Case Styles B or Short B only B1 = Babbitt layer applied to case tip, .100" MIN - Case Style A only | | | | то | TO ORDER WITHOUT FEEDTHR
ORDER WITH FEEDTHROUGH COI | | | # Installation and Accessories ### Case style A Install case style A sensor just below the babbitt layer, then puddle the babbitt metal over the sensor tip and smooth. Read Engineering Instruction #164 and Engineering Instruction #167 for (4.8 mm) complete details. ### Case style B The "top hat" flange shape allows spring loading with the AC171 spring and AC172 or AC915 retaining ring (order separately). Choose the economical AC172 style for lowest cost. The AC915 style allows removal and reinstallation. Slide the spring and ring over the leads, insert the sensor tip into a milled hole, and push down on the retaining ring to compress the spring and secure the sensor. Read Engineering Instruction #180 and Engineering Instruction #181. #### Case styles C and D Pot with epoxy inside small bearing shoes. Locate near the babbitt face for best readings. Read Engineering Instruction #184. ### AC171 spring for case style B Stainless steel. Outside diameter 0.240" (6.1 mm). Compressed length 0.22" (5.6 mm). To be used in conjunction with AC172 or AC915 for spring loading case style B #### Feedthroughs Feedthroughs provide an oil tight seal where a cable exits a machine housing. The stainless steel tube is epoxy filled and each wire is sealed to the individual conductor. This prevents wicking of oil inside the wires as well as leakage around the wire insulation. Pressure rating to 25 psi (1.7 bar). See page 3-12 for more information. #### AC172 and AC915 retaining ring for case style B | Model | "A" diameter | Hole I.D. | |---------|------------------------|------------------| | AC172 | sized to fit leadwires | 0.312" (7.92 mm) | | AC172-3 | 0.175" (4.45 mm) | 0.375" (9.53 mm) | | AC915-1 | 0.213" (5.4 mm) | 0.312" (7.92 mm) | #### **AC190 terminal block** Two tin-plated brass terminals. PTFE body. Meets MIL-T-17600. For instructions, read Installation Instruction #107. #### **AC191 terminal block** Two tin-plated brass terminals. PTFE body. Meets MIL-T-17600. Read Installation Instruction #121 for instructions. ### **AC192 terminal block** Three tin-plated brass terminals. Glass-filled PTFE body. #### **AC195 terminal block** Same as AC192 except polyamide-imide body for radiation resistance to 10° rads. #### **AC197 terminal block** Three tin-plated brass terminals. Glass-filled PTFE body. #### **AC196 terminal block** Same as AC197 except polyamide-imide body for radiation resistance to 10° rads. **▼**= STANDARD OPTIONS # **Bolt on RTDs** | | Dimensions
W x L x T (max.) | Temp.
range | Element options | Case
material | Leadwire | Model | |-------|--|--------------------------------|-----------------|--------------------|---|----------| | | 0.50 x 1.00 x 0.188" (12.7 x 25.4 x
4.8 mm) w/ 0.161" (4.1 mm)
diameter hole | -70 to 500°C
(-94 to 932°F) | PD, PF | | AWG 22, Mica-glass insulated | ▼S101730 | | | 0.29 x 1.25 x 0.188" (7.4 x 31.8 x
4.8 mm) with 0.161" (4.1 mm) hole | -70 to 500°C
(-94 to 932°F) | PD, PF | | AWG 22,
Mica-glass insulated | ▼S101731 | | | 0.265" (6.7 mm) ID ring lug | -50 to 260°C
(-58 to 500°F) | PD, PF | | 2 lead: AWG 24, 3 lead:
AWG 26, PTFE insulated | ▼S101732 | | | 0.50 x 0.375 x 0.188" (12.7 x 9.5 x 4.8 mm) with 0.166" (4.2 mm) hole | -50 to 260°C
(-58 to 500°F) | PD, PF | Stainless
steel | 2 lead: AWG 24, | ▼S101733 | | (Book | 1/4 - 20 x 3/8" long thread with 7/16"
hex head | -50 to 260°C | PD, PF | Jean ness | 3 lead: AWG 26,
PTFE insulated | ▼S101734 | | | M6 x 1 thread, 10 mm long, with 10 mm hex | (-58 to 500°F) | | steel | with SS braid cover | ▼S101797 | #### Overview Bolt-on temperature sensors are designed for easy installation in industrial and commercial environments. The sensors can be mounted on machines, against process pipes, or embedded directly into a machined part. Threaded fasteners install in seconds and can be easily removed for installation at another location. These sensors are ideal for process control measurements, test and verification of existing systems, and retrofitting existing machines. Standard designs allow prototyping without high setup costs, while significant discounts are available for large quantities. Standard platinum and nickel RTD elements provide stable and reliable output compatible with most control and monitoring systems. Physically interchangeable designs allow you to easily customize your installation to different instrumentation. Minco can also provide custom RTD, thermistor or thermocouple elements in these packages, or specialized case designs to meet your application needs. - Removable and reusable - · Wide temperature range - · Configurations to fit most applications - Standard 100 Ω platinum, 1000 Ω platinum and 100 Ω nickel elements ### **Specifications** Time constant: Less than 10 seconds in moving water. **Insulation resistance:** 10 megohms minimum at 100 VDC, leads to case. **Vibration:** Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202. Method 204, test condition D. | Element specifications* | | Code | |--|----------------------------|-------------| | Platinum (0.00385 TCR)
(EN60751, Class B) | 100 Ω ±0.12% at 0°C | ▼ PD | | Platinum (0.00385 TCR) | 1000 Ω ±0.12% at 0°C | ▼ PF | | Nickel 0.00618 TCR) | 100 Ω ±0.22% at 0°C | NB | #### **Specification and order options:** | S101732 | Model number from table | |---------|---| | PD | Element code from table | | 3 | Number of leads:
▼: 2 or 3 | | | 2 leads not recommended for PD models | | S | Leadwire covering: ▼ G = Mica-glass (S101730 and S101731) ▼ T = PTFE (S100722, S101732, S101733, S101734, and S101797) ▼ S = Stainless steel braid over PTFE insulated leads (S100722, S101732, S101733, S101734, and S101797) | | 40 | Leadwire length (inches): 40" (1000 mm) standard
▼: 40, 120 | | S101732 | PD3S40 = Sample part number | **▼**= STANDARD OPTIONS # **Economy RTDs** | | Dimensions | Temperature range | Element options | Case
material | Leadwire | Model | |--------------------|--|---------------------------------|-----------------|--------------------|--------------------------------------|-------------------| | _ | 2 leads: .050" x .065" x
.035" thick (1.3 x 1.7 x .9
mm) Thin-Film with
insulated leads | -50 to 150°C | PD, PF | Ceramic | AWG 32
solid enamel | ▼ \$102404 | | .0
m | 3 leads: .063" x .098" x .035" thick (1.6 x 2.5 x .9 mm) Thin-Film with insulated leads | (-58 to 302°F) | PD, FF | Cerannic | insulated | ▼ 3102404 | | | Ø .125" x .90"
(Ø 3.2 x 22.9 mm) | -50 to 260°C
(-58 to 500°F) | PD, PF | Stainless steel | AWG 26,
PTFE insulated | ▼ S102409 | | | Ø .125" x .90"
(Ø 3.2 x 22.9 mm) | -50 to
155°C
(-58 to 311°F) | PD, PF | Stainless steel | AWG 30, PTFE insulated | ▼S102737 | | | Ø .140" x .40"
(Ø 3.6 x 10.2 mm) | -70 to 500°C
(-94 to 932°F) | PD, PF | Ceramic | AWG 27, solid glass insulated nickel | ▼ S102410 | | PERSONAL PROPERTY. | Ø .188" x .90"
(Ø 4.8 x 22.9 mm) | -50 to 150°C
(-58 to 302°F) | PD, PF | Silicone
rubber | AWG 24, silicone rubber insulated | ▼S102406 | | | Ø .188" x 1.25"
(Ø 4.8 x 31.8 mm) | -50 to 230°C
(-58 to 446°F) | PD, PF | PTFE | AWG 24, PTFE with
PTFE jacket | ▼ S102405 | | | Ø .188" x 1.25"
(Ø 4.8 x 31.8 mm) | -50 to 260°C
(-58 to 500°F) | PD, PF | Aluminum | AWG 22, PTFE insulated | ▼ S102407 | | | Ø .188" x 2.38"
(Ø 4.8 x 60.5 mm) | -70 to 550°C
(-94 to 1022°F) | PD, PF | Stainless steel | AWG 22, glass
braid insulated | ▼ S102408 | #### Overview Economy sensors are designed to be a component of your final assembly. With insulated leads preattached and strain relieved, final construction is easy and reliable. - Insulated leads of variable length, installed and strain relieved - Wide temperature range - Configurations to fit most applications - Standard 100 Ω platinum, 1000 Ω platinum and 120 Ω nickel elements ### **Specifications** **Insulation resistance:** 10 megohms minimum at 100 VDC, leads to case. **Vibration:** Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202. Method 204, test condition D. | Ele | ement specifications* | | Code | |-----|--|-----------------------------|-------------| | Pla | atinum (0.00385 TCR)
(EN60751, Class B) | 100 Ω ±0.12% at 0°C | ▼ PD | | Pla | atinum (0.00385 TCR) | 1000 Ω ±0.12% at 0°C | ▼ PF | $[\]hbox{\it * See descriptions for element options on each model.}$ ### **Specification and order options** | S102408 | Model number from table | | | |----------|---|--|--| | PD | Element code from table | | | | 3 | Number of leads:
▼ 2 leads (not recommended for PD models) or
▼ 3 leads (only option for S102410PD) | | | | G | Leadwire covering: ▼ E = Enamel (S102404) ▼ G = Glass (S102408 and S102410) ▼ R = Silicone rubber (S102406) ▼ T = PTFE (S102405, S102407, S102409, S102737) | | | | 40 | Leadwire length in inches: 40" (1000 mm) standard ▼: 40, 120 | | | | S102408F | S102408PD3G40 = Sample part number | | | # Non-Metallic Case Miniature Sensors ## **Overview** Non-metallic case miniature sensors are designed for easy installation for industrial and commercial applications. These sensors can be installed directly into drilled holes in components such as bearings or machined parts, as well as onto surfaces of existing equipment. Non-metallic sensors can also be installed into end turn windings of motors and in other equipment. Standard cases are manufactured from DAP (Diallyl Phthalate) and elements are fully encapsulated with high temperature, thermally conductive epoxy. Due to the electrical insulation properties of the case material, these sensors are ideal for high voltage applications. Standard designs provide low cost options in a variety of sizes and configurations. Platinum RTD elements provide stable and reliable output compatible with most control and monitoring systems. Alternatively, interchangeable thermocouple designs allow you to easily customize your installation to different instrumentation. - · Wide temperature ranges - · Configurations to fit most applications - Standard 100 ohms platinum and 1,000 ohm platinum RTD elements, as well as nickel element options. - · Type E, J, K, or T thermocouple options #### **Case Styles** The illustrations to the right show Minco's standard case styles. Sensors are available in a variety of cylindrical cases for inserting directly into drilled holes, or rectangular cases for mounting on surfaces or embedding into a process. In addition, Minco offers several configuration options, including choices for leadwire lengths and leadwire coverings. We can also provide custom solutions for your sensor needs, including non-standard elements (such as thermistors) and custom sensor dimensions and materials. #### **Specifications** Time Constant: Less than 10 seconds in moving water. Insulation Resistance: 10 megohms minimum at 100 VDC, leads to outer surface of the case. Dielectric Strength: 1500 Volts RMS at 60 Hz, leads to outer surface of the case. Vibration: Withstands 10 to 2000 Hz at 20 G's minimum per MIL-STD-202, Method 204, test condition D. # Case Styles # Non-Metallic Case Miniature Sensors ### **RTD Specification and Options** | Model
number | Case dimensions | | Leadwire options | AWG
Single 2
lead | AWG
Single 3
lead | AWG
Single 4
lead | AWG
Dual
element | Temp
range | Lead
Covering
options | | |-----------------|---|------------------------------|------------------|-------------------------|-------------------------|-------------------------|------------------------|--------------------------------------|-----------------------------|---------------| |
S239391 | .125" diameter, .250" length | PA, PD, | | | | | | -50 to | | | | S239392 | .125" diameter, .375" length | PE, PF, | V,W,X Y,Z | 24 | 26 | 30 | 30 | 200°C
(-58 to | T, S, F, R, E | | | S239393 | .125" diameter, .500" length | PM, NA | | | | | | 392°F) | | | | S239394 | .188" diameter, .500" length | DA DD | | | | | | -50 to | | | | S239395 | .188" diameter, .500" length | PA, PD,
PE, PF, | U,V,W,X
Y,Z | 24 | 24 | 28 | 28 | 200°C
(-58 to | T, S, F, R, E | | | S239396 | .188" diameter, .500" length | PM, NA | I, INA | | | | | 392°F) | | | | S239397 | .250" diameter, .500" length | | PA, PD, L | | | | | | -50 to | | | S239398 | .250" diameter, .500" length | | | U,V,W,X
Y,Z | 24 | 24 | 24 | 28 | 200°C
(-58 to | T, S, F, R, E | | S239399 | .250" diameter, .500" length | | | ŕ | | | | 392°F) | | | | S239447 | .177" wide X .110" thick X
.500 Long | PA, PD,
PE, PF,
PM, NA | U,V,W,X
Y,Z | 24 | 26 | 26 | NA | -50 to
200°C
(-58 to
392°F) | T, S, F, R, E | | | S239448 | .155" wide X .155" thick X
.495 Long | PA, PD,
PE, PF,
PM, NA | U,V,W,X
Y,Z | 24 | 26 | 30 | 30 | -50 to
200°C
(-58 to
392°F) | T, S, F, R, E | | ### S239394 Model number from table | PD | RTD sensing element PD: Platinum (0.00385 TCR), 100Ω ± .12% at 0°C (Meets EN60751, Class B) PF: Platinum (.00385 TCR), 1000 Ω ± .12% at 0°C (Meets EN60751, Class B) PE: Platinum (.00385 TCR) 100 Ω ± .36% at 0°C (Meets EN60751, Class A) PA: Platinum (.00385 TCR) 100 Ω ± .06% at 0°C (Meets EN60751, Class A) PA: Platinum (.00392 TCR) 100 Ω ± .36% at 0°C NA: Nickel (.00672 TCR) 120 Ω ± .50% at 0°C *Repeated Element Code (i.e PDPD) Indicates Dual Sensing Elements | |---------|---| | Z | Number of leads, 2, 3 or 4 (4 leads not available on all models). 2 leads not available on PD or PM elements Single element: Y: 2 leads, RW Z: 3 leads, RWW (Minco US lead colors) W: 3 leads, WRR (IEC 60751 lead colors) X: 4 leads, RRWW Dual element: Y: 2 leads/element, RW/BIY V: 2 leads per element, WR/YBk (IEC 60751 lead colors) Z: 3 leads per element, RWW/BIYY (Minco U.S. lead colors) W: 3 leads per element, RRWW/BIBIYY) (Minco U.S. lead colors) X: 4 leads per element, RRWW/BIBIYY) (Minco U.S. lead colors) U: 4 leads per element, WWRR/YYBkBk (IEC 60751 lead colors) | | S | Leadwire Covering: F: FEP Jacket over PTFE Insulated Leads T: PTFE Insulated Leads Only (No Covering) S: Stainless Steel Braid over PTFE Insulated Leads R: FEP Jacket over Stainless Steel Braid and PTFE Insulated Leads E: FEP Jacket over Stainless Steel Braid and PTFE Insulated Leads | | 36 | Length in inches | | S239394 | PDZS36 = Sample Part Number | ## Non-Metallic Case Miniature Sensors ### **Thermocouple Specification and Options** | Model
number | Case dimensions | Junction type | Leadwire
covering | AWG | Temp range | |-----------------|---|--|----------------------|-----|----------------------------------| | TC239391 | .125" diameter, .250" length | E,J,K,T (available | | 24 | -184 to 200°C
(-299 to 392°F) | | TC239392 | .125" diameter, .375" length | in single element | T,S,F,R,E | | | | TC239393 | .125" diameter, .500" length | configurations) | | | | | TC239394 | .188" diameter, .250" length | E,J,K,T (available | | | | | TC239395 | .188" diameter, .375" length | in single element | T,S,F,R,E | 24 | -184 to 200°C
(-299 to 392°F) | | TC239396 | .188" diameter, .500" length | configurations) | | | | | TC239397 | .250" diameter, .250" length | E,J,K,T (available in single element T,S | | 24 | -184 to 200°C
(-299 to 392°F) | | TC239398 | .250" diameter, .375" length | | T,S,F,R,E | | | | TC239399 | .250" diameter, .500" length | configurations) | | | | | TC239447 | .177" wide X .110" thick X .500
Long | E,J,K,T (available
in single element
configurations) | T,S,F,R,E | 24 | -184 to 200°C
(-299 to 392°F) | | TC239448 | .155" wide X .155" thick X .495
Long | E,J,K,T (available
in single element
configurations) | T,S,F,R,E | 24 | -184 to 200°C
(-299
to 392°F) | #### TC239394 Model number from table | K | Thermocouple Type: E, J, K or T | | | |------------|--|--|--| | U | Ungrounded thermocouple junction | | | | S | Leadwire Covering: F: FEP Jacket over PTFE Insulated Leads T: PTFE Insulated Leads Only (No Covering) S: Stainless Steel Braid over PTFE Insulated Leads R: FEP Jacket over Stainless Steel Braid and PTFE Insulated Leads E: FEP Jacket over Stainless Steel Braid and PTFE Insulated Leads with Elastomer Fill | | | | 36 | Length in inches | | | | TC239394KU | TC239394KUS36 = Sample Part Number | | | ## ► SECTION 6: STATOR WINDING SENSORS - Install between stator windings for continuous protection of motors and generators - Agency approved sensors for use in hazardous areas - · Single and dual elements offer high reliability - Sensor dimensions to fit any machine - Class F or Class H #### **Section 6: Stator RTDs** | Stator winding RTDs | 6-2 to 6-3 | |------------------------------------|------------| | Hazardous area stator winding RTDs | 6-4 to 6-5 | | Machinery protection products | 6-6 | ### Stator Winding RTDs #### **Overview** Flat, laminated "stick" RTDs fit in slots between stator windings to monitor temperature rise and prevent overheating. The National Electrical Manufacturers Association (NEMA) recognizes embedded detectors as a standard protection for motor and generator insulation. Unlike on-off devices, RTDs provide continuous sensing for earlier warning without unnecessary tripouts. The sensing elements of stator RTDs extend through most of the body length to provide an average temperature reading. This eliminates the danger of a point-type sensor missing a localized hot spot. Six sensors are recommended for each motor, two per phase. Locate sensors near the hottest point of the windings for best performance. Dual element stator winding RTDs provide extra protection for motors and generators. The second element can be a back up in case of damage, or use one element for input to a temperature display at the machine and the other for control room monitoring. Minco stator RTDs meet the specifications of ANSI C50.10-1990, general requirements for synchronous motors. #### **Specifications** #### **Temperature limit:** Class F: 155°C (311°F) Class H: 180°C (356°F). **Dielectric strength:** 3,200 VRMS at 60 Hz, 1 mA maximum leakage current, tested momentarily (1–5 seconds), between the leads and external flat body surface. #### **Custom designs** Minco designs and builds custom models for many applications. We offer unmatched capabilities because we control all steps of the production from element to finished product. Examples of special options include: - Thermocouple elements - Thermistor elements (PTC or NTC) - Dual sensors with different elements (for example, one copper and one platinum element) - Ex rated sensors for equipment in hazardous areas. See page 7-2 for more information. - · Electrically conductive coating - · Special leadwire or cable - Larger body sizes - Side lead exit ## **Stator Winding RTDs** Configure the sensor to best fit application needs **RTD Sensing Element** | Code | Element | TCR
Ω/Ω/°C | |------|--|---------------| | CA | Copper, 10 Ω ±0.2% (10.02/9.98)
at 25°C | 0.00427 | | NA | Nickel, 120 Ω ±0.5% (120.60/119.40)
at 0°C | 0.00672 | | PA | Platinum, 100 Ω ±0.50% (100.50/99.50)
at 0°C | 0.00392 | | PD | Platinum, 100 Ω ±0.12% (100.12/99.98) at 0°C (Meets EN60751, Class B) | 0.00385 | | PE | Platinum, 100 Ω ±0.50% (100.50/99.50)
at 0°C | 0.00385 | | PF | Platinum, 1000 Ω ±0.12% (1001.2/998.8) at 0°C (Meets EN60751, Class B) | 0.00385 | | PM | Platinum, 100 Ω ±0.06% (100.06/99.94) at 0°C (Meets EN60751, Class A) | 0.00385 | S300xx Example of Model Number | S300 | Base Model Number | | | | |------------------|---|---|--|--| | 1 | Number of sensing elements:
1 = 1 wire-wound element (single)
2 = 2 wire-wound elements (dual) | | | | | 1 | Thickness T: 1 = .030", AWG 30 leadwires 2 = .030", AWG 26 leadwires 3 = .030", AWG 22 leadwires 4 = .050", AWG 22 leadwires 9 = .157", AWG 22 leadwires 9 = .157", AWG 22 leadwires | | | | | PD | Sensing element (from RTD Sens | ing Element Table) | | | | 100 | Body length L in .1" increments (
MIN L = 20 (2.0")
MAX L =232 (23.2") | 100 = 10.0") | | | | Т | Lead insulation: T = PTFE K = Polyimide (only available in N leadwire configuration) | | | | | 344 | Body width W in .001" increments (344 = .344") MIN W = 219 (.219") (S3001_ models); 2 or 3 lead MIN W = 320 (.320") (S3001_ models); 4 lead MIN W = 425 (.425") (S3002_ models) MAX W = 956 (.956") | | | | | Z | Number of leads and lead color: Single Element Y = 2 leads, RW Z = 3 leads, RWW (Minco U.S. lead colors) W = 3 leads, WRR (IEC 60751 lead colors) X = 4 leads, RRWW Dual Element Y = 2 leads per element, RW/BIY (Minco U.S. lead colors) V = 2 leads per element, WR/YBk (IEC 60751 lead colors) Z = 3 leads per element, RWW/BIYY (Minco U.S. lead colors) W = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) | | | | | 360 | Lead length B in inches | | | | | В | Leadwire configuration/covering: N = Straight leads, insulated with no covering T = Twisted leads, insulated with no covering F = FEP jacket over leads | S = Stainless steel braid over leads R = FEP jacket over stainless steel braid B = FEP jacket over silver plated copper braid with drainwire E = FEP jacket over silver plated copper braid and drainwire with elastomer fill | | | | 10 | Cable jacket and/or braid removal ler
(Specify "0" for N and T options) othe | | | | | S 30011 P | S 30011 PD100T344Z360B10 = Sample part number | | | | | | | | | | Calibration data (resistance measurements) may also be ordered. Contact Minco sales team for details. #### **Increased Safety Stator Winding RTDs:** (x) II 2 G Ex eb IIC Gb IECEx Ex eb IIC Gb CSA/US Class I, Zone 1, Ex/AEx eb IIC Gb CCC/NEPSI Ex e IIC Gb #### **Intrinsic Safety Stator Winding RTDs:** (x) II 1 G Ex ia IIC Ga IECEX Ex ia IIC Ga CSA/US Class I, Zone 0, Ex/AEx ia IIC Ga CSA/US Class I, Division 1, Groups A, B, C, D CCC/NEPSI Ex ia IIC Ga #### **Overview** Insert these thin, laminated RTDs in stator winding slots to detect high temperatures before insulation damage occurs. RTD temperature sensors continuously monitor conditions and provide the long term trend data that is necessary for making adjustments before unexpected alarms occur. These models are designed for use in hazardous areas, where there may be a presence of flammable gas under normal operating conditions. Strict construction guidelines prevent arcing. #### **Agency Certifications** Tri-certified to satisfy European (EN), International (IEC), and North American (U.S. and Canada) standards for electrical apparatus in potentially explosive atmospheres (Ex): - ATEX Directive 2014/34/EU - EN/IEC/UL/CSA 60079-0: Equipment General requirements - EN/IEC/UL/CSA 60079-7: Equipment protection by increased safety "e" - EN/IEC/UL/CSA 60079-11: Equipment protection by intrinsic safety "i" - National and Canadian Electrical Codes as Class I, Division 1, Groups ABCD intrinsic safety "ia" - EN 50495: Safety devices required for the safe functioning of equipment with respect to explosion risks, SIL capable up to a safety level of SIL2 or SIL3 Conforms with China standards GB 3836.1-2010 (General requirements), GB 3836.3-2010 (increased safety "e"), and GB 3836.4-2010 (intrinsic safety "ia"). #### **Specifications** **Temperature limit:** -50 to 180°C (-58 to 356°F), class H. Body material: High temperature epoxy glass. **Leadwires:** 2, 3, or 4 leads, stranded copper, AWG #22 (0.35 mm², with TFE or polyimide insulation). Dielectric strength: 3,200 VRMS at 60 Hz, 1 mA maximum leakage current, tested momentarily (1–5 seconds), between the leads and external flat body surface. #### **Two Sensing Options** Choose between wire-wound or thin-film sensing elements: - Wire-wound elements are the standard for use in stator winding temperature sensors since the temperature sensitive length extends nearly the entire sensor body length. This greatly increases the probability of detecting a localized hot spot within the motor or generator. In addition, Minco's proprietary element winding designs provide protection against electrical noise which can decrease sensor accuracy. - Thin-film elements are effectively point sensors, with a temperature sensitive length of approximately 0.1". A hot spot located merely inches away from the thinfilm element could delay detection, or worse – remain completely undetected. Thin-film elements are generally not recommended for stator sensors longer than 4", but are required for stator sensors under 2" long. These short sensors are also appropriate for installation within the motor/generator winding's end turns. Minco Thermal Ribbons and Thermal Tabs are also used for end turn installation. ### Hazardous Area RTDs Configure the sensor to best fit application needs ### **RTD Sensing Element** | KID Conding Etomont | | | | |
|---------------------|--|---------------|--|--| | Code | Element | TCR
Ω/Ω/°C | | | | CA | Copper, 10 Ω ±0.2% (10.02/9.98)
at 25°C | 0.00427 | | | | NA | Nickel, 120 Ω ±0.5% (120.60/119.40)
at 0°C | 0.00672 | | | | PA | Platinum, 100 Ω ±0.50% (100.50/99.50)
at 0°C | 0.00392 | | | | PD | Platinum, 100 Ω ±0.12% (100.12/99.98) at 0°C (Meets EN60751, Class B) | 0.00385 | | | | PE | Platinum, 100 Ω ±0.50% (100.50/99.50)
at 0°C | 0.00385 | | | | PF | Platinum, 1000 Ω ±0.12% (1001.2/998.8) at 0°C (Meets EN60751, Class B) | 0.00385 | | | | PM | Platinum, 100 Ω ±0.06% (100.06/99.94) at 0°C (Meets EN60751, Class A) | 0.00385 | | | ### Certifications Minco's S1xx series sensors are certified by multiple agencies. Consult the following list to learn more: IECEx (IEC 60079): Ex ia IIC Ga Ex eb IIC Gb ATEX (EN 60079): II 1 G Ex ia IIC Ga II 2 G Ex eb IIC Gb CSA Canada (CSA C22.2): Ex ia IIC Ga Ex eb IIC Gb IS CI I, Div 1, Grp ABCD CSA US (NFPA 70 Part 500 & 505): Cl I, Zone 0 AEx ia IIC Ga Cl I, Zone 1, AEx eb IIC Gb IS Cl 1, Div 1, Grp ABCD CCC and NEPSI certified (China GB 3836 standards): Ex ia IIC Ga EX e IIC Gb ### S1xx Example of Model Number | Number of sensing elements: 1 | SIXX Example of Model Humber | | | | | |--|------------------------------|--|--|--|--| | 1 = 1 wire-wound element (single) - Not available with PF element. 2 = 2 wire-wound elements (single) - Not available with CA or NA element. 3 = 1 thin-film elements (single) - Not available with CA or NA element. 4 = 2 thin-film elements (dual) - Not available with CA or NA element. 7 | S1 | Base Model Number | Base Model Number | | | | 0 = 0.79" 1 = 0.98" 2 = 1.18" 3 = 1.38" 4 = 1.57" PD Sensing element (from RTD Sensing Element Table) Body length L in .1" increments (100 = 10.0") MIN L = 20 (2.0") (SI1_, or SI2_ models) MNN L = 7 (0.7") (SI3_ or S14_ models) MAX L = 232 (23.2") T Lead insulation: T = PTFE K = Polyimide (only available in N leadwire configuration) Body width W in .001" increments (344 = .344") MIN W = 219 (.219") (SI1_or SI3_; 2 or 3 leads) MIN W = 320 (.320") (SI1_or SI3_; 4 leads) MIN W = 425 (.425") (SI2_ or SI4_) MAX W = 956 (.956") Number of leads and lead color: Single Element Y = 2 leads, RW Z = 3 leads, RWW (Minco U.S. lead colors) W = 3 leads, RWW (Minco U.S. lead colors) X = 4 leads, RRWW Dual Element Y = 2 leads per element, RW/BIY (Minco U.S. lead colors) W = 3 leads per element, WR/YBk (IEC 60751 lead colors) W = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) W = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) T = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) W = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) T = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) W = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 60751 lead colors) U = 3 leads per element, WRR/YBkBk (IEC 6 | 1 | 1 = 1 wire-wound element (single) – Not available with PF element.
2 = 2 wire-wound elements (dual) – Not available with PF element.
3 = 1 thin-film elements (single) – Not available with CA or NA element. | | | | | Body length L in .1" increments (100 = 10.0") MIN L = 20 (2.0") (S11_, or S12_ models) MIN L = 7 (0.7") (S13_ or S14_ models) MAX L = 232 (23.2") Lead insulation: T = PTFE | 0 | 0 = .079"
1 = .098"
2 = .118"
3 = .138" | 0 = .079"
1 = .098"
2 = .118"
3 = .138" | | | | MIN L = 20 (2.0") (S11_, or S12_ models) MIN L = 7 (0.7") (S13_ or S14_ models) MAX L = 232 (23.2") T | PD | Sensing element (from RTD Sens | ing Element Table) | | | | T = PTFE K = Polyimide (only available in N leadwire configuration) Body width W in .001" increments (344 = .344") MIN W = 219 (.219") (S11_ or S13_; 2 or 3 leads) MIN W = 320 (.320") (S11_ or S13_; 4 leads) MIN W = 425 (.425") (S12_ or S14_) MAX W = 956 (.956") Number of leads and lead color: Single Element Y = 2 leads, RW Z = 3 leads, RWW (Minco U.S. lead colors) W = 3 leads, WRR (IEC 60751 lead colors) X = 4 leads, RRWW Lead leads, RRWW S = 3 leads, RRWW S = 3 leads per element, RW/BIYY (Minco U.S. lead colors) W = 3 leads per element, RWW/BIYY (Minco U.S. lead colors) W = 3 leads per element, WR/YBkBk (IEC 60751 lead colors) S = Stainless steel braid over leads R = FEP jacket over stainless steel braid B = FEP jacket over stainless steel braid with rinc covering T = Twisted leads, insulated with no covering F = FEP jacket over leads Cable jacket and/or braid removal length C in .1" increments (10 = 1.0") (Specify "0" for N and T options) otherwise, MIN C = 5 (.5") | 100 | MIN L = 20 (2.0") (S11_, or S12_ mo
MIN L = 7 (0.7") (S13_ or S14_ mod | dels) | | | | MIN W = 219 (.219") (S11_or S13_; 2 or 3 leads) MIN W = 320 (.320") (S11_or S13_; 4 leads) MIN W = 425 (.425") (S12_ or S14_) MAX W = 956 (.956") Number of leads and lead color: Single Element | т | | | | | | Z Single Element Y = 2 leads, RW Z = 3 leads, RWW (Minco U.S. lead colors) W = 3 leads, WRR (IEC 60751 lead colors) X = 4 leads, RRWW Lead length B in inches Leadwire configuration/covering: N = Straight leads, insulated with no covering T = Twisted leads, insulated with no covering F = FEP jacket over leads Cable jacket and/or braid removal length C in .1" increments (10 = 1.0") (Specify "0" for N and T options) otherwise, MIN C = 5 (.5") | 344 | MIN W = 219 (.219") (S11_or S13_; 2 or 3 leads)
MIN W = 320 (.320") (S11_or S13_; 4 leads)
MIN W = 425 (.425") (S12_ or S14_) | | | | | B Leadwire configuration/covering: N = Straight leads, insulated with no covering T = Twisted leads, insulated with no covering F = FEP jacket over leads Cable jacket and/or braid removal length C in .1" increments (10 = 1.0") (Specify "0" for N and T options) otherwise, MIN C = 5 (.5") | Z | Single Element Y = 2 leads, RW Z = 3 leads, RWW (Minco U.S. lead colors) W = 3 leads, WRR (IEC 60751 lead colors) X = 4 leads, RRWW Single Element Y = 2 leads per element, RW/BlY (Minco U.S. lead colors) V = 2 leads per element, WR/YBk (IEC 60751 lead colors) Z = 3 leads per element, RWW/BlYY (Minco U.S. lead colors) W = 3 leads per element, WRR/YBkBk | | | | | N = Straight leads, insulated with no covering T = Twisted leads, insulated with no covering F = FEP jacket over leads Cable jacket and/or braid removal length C in .1" increments (10 = 1.0") (Specify "0" for N and T options) otherwise, MIN C = 5 (.5") | 360 | Lead length B in inches | | | | | (Specify "0" for N and T options) otherwise, MIN C = 5 (.5") | В | N = Straight leads, insulated with no covering T = Twisted leads, insulated with no covering R = FEP jacket over stainless steel braid B = FEP jacket over silver plated copper braid with drainwire Covering E = FEP jacket
over silver plated copper | | | | | \$110PD100T3447360R10 = Sample part number | 10 | | | | | | offor Dioofo442000Bio - Gample part number | S110PD1 | S110PD100T344Z360B10 = Sample part number | | | | Calibration data (resistance measurements) may also be ordered. Contact Minco sales team for details. ### **Machinery Protection Products** #### CT224 12-channel temperature alarm/monitor The CT224 consists of a 12-Channel Temperature Monitor and MincoSoft™ CT224 Software. It is the next generation in temperature monitoring equipment from Minco designed to meet the needs of electric machinery protection. The 12-channel scanning capability, standard RS485/RS232 interface and Windows-compatible software utility for system configuration and data logging provide overtemperature and undertemperature protection and critical feedback to safeguard expensive machinery. - UL and cUL recognized to help meet regulatory compliance - Mix and match sensor input types for freedom to adapt to pre-installed bearing and apparatus sensors - Ability to monitor 12 inputs allows you to monitor stator sensors from two motors See page 4-25 for details. #### **End turn RTD** Model S3238 Thermal-Ribbon is designed to sense stator temperatures in motors and generators. With an alternative installation method to the "stick-type" sensors in this section, S3238 is used on the end turns of stator windings and provides an easy way to add overtemperature protection when the stator is not being rewound. See page 9-5 for details. #### CT15 temperature alarm - Alarm shuts down motor on over-temperature to prevent catastrophic failure - Monitors single 100 Ω platinum RTD (PD or PE) - 1 or 2 relays with independent trip points for warning and shutdown - Microprocessor-based - Front panel programmable with four security levels - 100 to 240 VAC supply power - Compact DIN case with water resistant front panel See pages 4-33 for details. #### **Anti-condensation space heaters** - · Flexible silicone rubber insulation - Mount on windings or housings to prevent moisture buildup - 2.5 to 10 watts per square inch at 120 or 240 volts - Variety of sizes to 60" (1.5 m) - UL component recognition - Available from stock Go to www.minco.com for more information. ## ► SECTION 7: HVAC SENSORS - Complete range of sensors/transmitter assemblies made for easy installation, high reliability, and compatibility with almost any Building Automation System - Accurate and stable sensing ensures maximum energy efficiency - Optional matched system calibration of transmitters and sensors offer increased accuracy - RTDs, thermistors and humidity sensing for a variety of applications in critical environments #### **Section 7: HVAC Sensors** | Chill-Out™ combination sensor | 7-2 to 7-3 | |--|-------------| | Averaging temperature sensors | 7-4 | | Duct and outside air temperature sensors | 7-5 | | Room air temperature sensors | 7-6 | | Flexible Thermal-Ribbon™ pipe sensors | 7-7 | | Humidity sensor/transmitter assembly | 7-8 to 7-9 | | Hazardous area humidity assembly | 7-10 to 7-1 | | ntrinsically safe humidity assembly | 7-12 to 7-13 | |--|--------------| | Thermal vial™ temperature sensing system | 7-14 to 7-15 | | Refrigeration and freezer temperature system | 7-16 | | Fluid immersion temperature sensors | 7-17 | | Elements and probes | 7-18 | | Temptran 4 to 20 mA transmitters | 7-19 | ### Chill-Out[™] Combination Sensor #### Overview - Two sensors in one easily installed package: a solid state low temperature cut-out ("Freeze Stat") and an averaging resistance temperature sensor. - Digital alarm signal to RTU, PLC or an electronic control; 24VAC-powered. - Solid state design and rugged ³/8" diameter tubing eliminate concerns of gas leaks or kinking the capillary during installation. - Mount in any direction horizontal installation is not required. - Easily formed aluminum or ultra flexible plenum-rated PVC coated galvanized steel armor sensor case. - Relay and control circuitry self contained in rugged housing. Mounts on either side of enclosure with a locknut (included). - Failure detection feature relay changes state if power is lost - 4 to 20 mA temperature loop output available with optional Temptran™ (ordered separately — see Section 4 for more information) #### **Specifications** **Switching temperature:** 38°F factory pre-set, user adjustable from 30°F to 44°F. **Accuracy:** ±0.9°F (±0.5°C) typical. **Power requirement:** 24V AC or DC. Relay contact: User specified Standard relay, SPDT (2" x 4" utility box) 0.3 A at 125 VAC, Max. Voltage 125 VAC, or 1A at 30 VDC, Max. Voltage 110 VDC Optional power relay, DPST (4" x 4" utility box) 25 A at 277 VAC 25 A at 120 VAC 1 HP at 120 VAC 2 HP at 277 VAC **Sensor case length:** 10 feet standard, lengths up to 50 feet available by special order. Connection: AWG 18 leadwires. #### Specification and order options | | in and order options | | | |-------------|--|--|--| | ▼AS103759 | Model number | | | | PF | Element Type: | | | | | PF = 1000 RTD (0.00385 Platinum) | | | | 38 | Switching Temperature: ▼38°F | | | | | Specify 30 to 44°F | | | | Е | Relay reset option: | | | | | N = Non-latching (auto reset) | | | | | ▼L = Latching (manual reset) | | | | | ∇E = Latching (panel mounted reset) | | | | | Note: option 'E' requires enclosure 'L' | | | | 10 | Case length: 10 feet | | | | | ▼: 10, 24, 50 | | | | Α | Case type: | | | | | ▼A = Aluminum | | | | | ▼B = PVC | | | | 1 | Relay Rating: | | | | | ▼1 = 0.3A | | | | | $\nabla 2 = 25A$, VAC powered controller/coil | | | | | 3 = 25A, VDC powered controller/coil | | | | | Note: option 2 or 3 requires enclosure 'L' | | | | L | Enclosure: | | | | | N = No enclosure | | | | | S = Standard utility box (2" x 4") | | | | | All L = Large utility box (4" x 4") | | | | | W = Weatherproof utility box (2" x 4") | | | | AS103759PF3 | AS103759PF38E10A1L = Sample part number | | | #### **Order Replacement Relays** | Model number | External Relay | |--------------|----------------| | AC103779 | 25A | | | 24VAC Coil | | AC103780 | 25A | | | 24VDC Coil | ## Chill-Out[™] Combination Sensor #### **Chill-Out Sensor Interface** #### **Setpoint Adjustment** ### **Standard and Large Utility Boxes** #### No Enclosure #### **Weatherproof Utility Box** #### **Typical Installation with Relay** **▼**= STANDARD OPTIONS ### **Averaging Temperature Sensors** #### Overview Sense temperature of air streams in ducts and plenums. Sensors include a junction box with gasket to prevent leakage and vibration noise. These sensors have a continuous element to sense true average temperature along their entire length. They provide accurate composite readings in locations where air may be stratified into hot and cold layers. Rigid averaging sensors have a brass case. Bendable models have aluminum sheaths (copper on special order), formable to a radius of 4". Bendable sensors can criss-cross ducts to average temperatures in two dimensions. See page 4-2 for optional 4 to 20 mA temperature transmitters. #### **Specifications** #### Temperature range: Probe: -45.5 to 135°C (-50 to 275°F). Gasket: 100°C (212°F) max. Leadwires: AWG 22, PTFE insulated, 8" (200 mm) long. Moisture resistance: Meet MIL-STD-202, Method 104, Test Condition B. #### **Special options:** - Lengths to 100 feet(30 m) - Weatherproof connection box - · Sensor only, no box - Thermistor averaging sensors #### Model numbers | RTDs
(Tolerance: ±0.2 | 5% at 70°F) | TCR
/ /°C | Rigid
averaging
sensors | Bendable
averaging
sensors | |--------------------------|-------------|--------------|-------------------------------|----------------------------------| | *Platinum 100 | at 0°C | 0.00391 | S423PB | S447PB | | *Platinum 100 | at 0°C | 0.00385 | ▼ S456PE | ▼ S457PE | | *Platinum 1000 | at 0°C | 0.00385 | ▼ S493PF | ▼ S475PF | | *Platinum 1000 | at 0°C | 0.00375 | S492PW | ▼ S488PW | | Nickel-iron 1000 | at 70°F | 0.00527 | S421FB | S445FB | | Nickel-iron 2000 | at 70°F | 0.00527 | S422FC | S446FC | | *HW 3000 | at -30.2°C | 0.00262 | S20080PX | ▼ S15215PX | ^{*} These averaging sensors use a proprietary sensing element that closely matches the platinum curve over the specified range. #### **▼**= STANDARD OPTIONS Specifications subject to change #### Specification and order options: #### Rigid averaging sensors | S456PE | Model number from table | | | |---------|-------------------------------------|--|--| | Υ | Number of leads: | | | | | ∇ Y = 2 leads
Z = 3 leads | | | | 12 | Insertion depth in inches: | | | | | 1 inch = 25.4 mm | | | | | ▼: 12, 24, 48 | | | | S456PEY | S456PEY12 = Sample part number | | | #### Bendable averaging sensors | S457PE | Model number from table | | | |---------|---|--|--| | Z | Number of leads:
▼Y = 2 leads
▼Z = 3 leads | | | | 24 | Insertion length in feet: 1 foot = 0.3 m ▼: 12, 24, 50, 100 | | | | S457PEZ | S457PEZ24 = Sample part number | | | #### To order with transmitter, add | TT111 | Transmitter Models | | | | |---------|---|--|--|--| | | TT111: Fixed Range (2 leads) | | | | | | TT211: Fixed Range (2 leads) | | | | | | TT321: Fixed Range (3 leads) | | | | | | Contact for other transmitter options. | | | | | Α | Temperature Range Code: | | | | | | $A = 20^{\circ}F \text{ to } 120^{\circ}F \text{ (-6.7°C to } 48.9^{\circ}C)$ | | | | | | Contact for complete list of available temp. codes. | | | | | 1 | Calibration: | | | | | | 1 = Nominal Calibration | | | | | | 2 = Match Calibrated, | | | | | | 0.75% Total System Accuracy | | | | | | Contact for other calibration options. | | | | | TT111A1 | = Sample part number addition | | | | ### **Duct and Outside Air Temperature Sensors** #### Overview Sense temperature of air streams in ducts
and plenums. Sensors include a junction box with gasket to prevent leakage and vibration noise. These point-sensing thermometers feature a fast-responding aluminum sensing tip. Custom options include a weatherproof connection box and an all stainless steel probe. Outside air sensors are designed to mount on conduit outside your building. They include an elbow type enclosure and sun shield. See page 4-2 for optional 4 to 20 mA temperature transmitters. #### **Specifications** #### Temperature range: Probe: -45.5 to 135°C (-50 to 275°F). Gasket: 100°C (212°F) max. #### Leadwires: AWG 22, PTFE insulated, 4" (100 mm) long. #### Moisture resistance: Point sensors meet MIL-STD-202, Method 104, Test Condition B #### **Special options** - Weatherproof connection box - · All stainless steel probe #### Model numbers | Element | | | TCR
Ω /Ω/°C | Duct point sensors | Outside air sensors | |-----------------------|-----------------|--------------------------|----------------|--------------------|---------------------| | RTDs | | | | | | | Platinum | 100 | ±0.1% at 0°C | 0.00391 | ▼ S408PB | ▼S414PB | | Platinum
(Meets EN | 100
50751, C | ±0.1% at 0°C
Class B) | 0.00385 | ▼S450PD | ▼S454PD | | Platinum | 1000 | ±0.1% at 0°C | 0.00385 | ▼S451PF | S455PF | | Platinum | 1000 | ±0.1% at 0°C | 0.00375 | ▼ S484PW | S486PW | | Nickel-iron | 1000 | ±0.12% at 70°F | 0.00527 | S406FB | S412FB | | Nickel-iron | 2000 | ±0.12% at 70°F | 0.00527 | S407FC | S413FC | | HW | 3000 | at -30.2°C | 0.00262 | S100060PX | S100062PX | | Thermistors | | | R251/4R125 | | | | Thermistor | 2,252 | ±1% at 25℃ | 29.2 | TS430TA | TS428TA | | Thermistor 1 | 10,000 | ±1% at 25℃ | 23.5 | TS431TB | TS429TB | Specifications subject to change ## Specification and order options: Duct point sensors | S450PD | Model number from table | | | |--------------------------------|---|--|--| | Υ | Number of leads:
▼ Y = 2 leads
Z = 3 leads (RTD only) | | | | 12 | Insertion depth in inches: 1 inch = 25.4 mm ▼: 6, 12, 18" Minimum: 3" | | | | S450PDY12 = Sample part number | | | | #### **Outside air sensors** | S414PB | Model number from table | | | |------------------------------|---|--|--| | Z | Number of leads:
▼ Y = 2 leads
▼ Z = 3 leads (RTD only) | | | | S414PBZ = Sample part number | | | | #### To order with transmitter, add | TT111 | Transmitter Models | | | | | | |---------|---|--|--|--|--|--| | | TT111: Fixed Range (2 leads) | | | | | | | | TT211: Fixed Range (2 leads) | | | | | | | | TT321: Fixed Range (3 leads) | | | | | | | | Contact for other transmitter options. | | | | | | | Α | Temperature Range Code: | | | | | | | | $A = 20^{\circ}F \text{ to } 120^{\circ}F \text{ (-6.7°C to } 48.9^{\circ}C)$ | | | | | | | | Contact for complete list of available temp. codes. | | | | | | | 1 | Calibration: | | | | | | | | 1 = Nominal Calibration | | | | | | | | 2 = Match Calibrated, | | | | | | | | 0.75% Total System Accuracy | | | | | | | | 3 = Match Calibrated, | | | | | | | | 0.5% Total System Accuracy | | | | | | | | 4 = Match Calibrated, | | | | | | | | 0.2% or 1°C Total System Accuracy | | | | | | | | Contact for other calibration options. | | | | | | | TT111A1 | TT111A1 = Sample part number addition | | | | | | ### Room Air Temperature Sensors #### **Compact Wall-mount** Dimensions: ### Full Size Wall-mount Dimensions: W 2 75" (70 mm) Н 4.50" (114 mm) D 1.56" (40 mm) ### **Explosionproof Wall-** Dimensions: W 1.60" (41 mm) 5.55" (141 mm) 2.05" (52 mm) #### Flush Wall-mount Dimensions: 2.75" (70 mm) 4.50" (114 mm) Н 0.18" (5 mm) #### Overview Minco's room air sensors are available with a variety of enclosures that meet most standard and explosionproof HVAC/R installations. The sensors can be match calibrated with a Minco Temptran™ (temperature transmitter) for increased accuracy and reliability. Room air sensors are designed for wall mounting. Choose from two plastic enclosure styles with brushed aluminum faceplates or a flushmount stainless steel model. The full-size enclosure and flushmount fit over standard junction boxes. The full size enclosure has optional knockouts for Wiremold raceway surface wiring. Just remove knockouts with pliers. This enclosure may also include a 4-20 mA temperature transmitter; specify model AS200655. The compact room air sensor mounts directly on drywall. The explosion proof sensor housing is UL listed and CSA approved for Class I, Groups C and D; Class II, Groups E, F, and G; and Class III. Download Application Aid #19 for more hazardous area information and the various standards and agencies (including FM, CSA, CENELEC and ATEX) at www.minco.com. #### **Specifications** #### Temperature range: -45.5 to 100°C (-50 to 212°F) Temperature range (with TT115 transmitter): Zero: -40 to 10°C (-40 to 50°F) Span: 25 to 100°C (45 to 180°F) Max upper temperature: 85°C (185°F) #### Leadwires: Full size and compact: AWG 22, PTFE insulated, 4" (100 mm) long. Explosionproof and flush mount: AWG 26, PTFE insulated, 6" (150 mm) inside cover. Moisture resistance: Meets MIL-STD-202, Method 104, Test Condition B. Transmitters: Full size sensors with 2 leads can use Temptran[™] transmitter model TT115 installed within the sensor enclosure. A variety of transmitters are available for all other sensor models. Transmitters must be installed in a separate enclosure from the sensor. #### Specification and order options: #### Compact and full size | S472PB | Model number from table Number of leads: $\bigvee Y = 2 \text{ leads}$ Lead length in inches: $\bigvee : 4$ | | | | |---------------------------------|--|--|--|--| | Υ | | | | | | 4 | | | | | | K0 | Knockouts (full size only):
▼ K0= No knockouts
K1= Knockouts for wiremold raceway | | | | | S472PBY4K0 = Sample part number | | | | | Note: For replacement cover only, order part AC692KO or AC692K1 for full size, AC551 for compact. #### **Explosionproof and flush-mount** | | S100147PD | Model number from table Number of leads: Y = 2 leads Z = 3 leads | | | | |---|---------------------------------|---|--|--|--| | | Υ | | | | | | 1 | S100147PDY = Sample part number | | | | | #### STOCKED PARTS AVAILABLE | | Element | TCR
Ω /Ω/°C | Compact
room air
sensors | Full size
room air
sensors | Explosion-
proof
wall-mount
sensors | Flush
mount
room air
sensors | |---|--|----------------|--------------------------------|----------------------------------|--|---------------------------------------| | | RTDs | | | | | | | | Platinum
100 Ω ±0.1% at 0°C | 0.00391 | S405PB | S472PB | | | | | Platinum
100 Ω \pm 0.1% at 0°C
(Meets EN60751, Class B) | 0.00385 | ▼ S448PD | ▼ S473PD | S100147PD | S101456PD | | | Platinum 1000 Ω ±0.1% at 0°C | 0.00385 | ▼ S449PF | ▼ S474PF | S100148PF | S101456PF | | | Platinum
1000 Ω ±0.1% at 0°C | 0.00375 | S483PW | S489PW | S101608PW | S101456PW | | : | Nickel-iron 1000 Ω ±0.12% at 70°F | 0.00527 | S403FB | S470FB | | | | | Nickel-iron 2000 Ω ±0.12% at 70°F | 0.00527 | S404FC | S471FC | | | | | HW
3000 Ω at -30.2°C | 0.00262 | S1000064PX | S1000063PX | | | | | Thermistors | R251/4R125 | | | | | | | Thermistor 2,252 Ω ±1% at 25°C | 29.2 | TS426TA | TS424TA | TS100149TA | TS101769TA | | | Thermistor 10,000 Ω ±1% at 25°C | 23.5 | TS427TB | TS425TB | TS100150TB | TS101769TB | ## Flexible Thermal-Ribbon™ Pipe Sensors #### Overview Flexible Thermal-Ribbon™ sensors mount on the pipe surface so there's no expense of a pipefitter to drain, drill, and tap the pipe for a thermowell because there is no thermowell! When properly installed and insulated, the accuracy and response of a Thermal-Ribbon equals an immersed thermowell assembly. Options include stainless steel braid over leadwires to prevent abrasion damage and pressure-sensitive adhesive for easier mounting (smooth surfaces only). See Section 4 for optional 4 to 20 mA temperature Note: Tape the Thermal-Ribbon in place beneath a layer of insulation. #### Mounting accessories: #### AC766 mounting kit Provides a pipe-mounted enclosure for transmitters and connections. Kit includes junction box, 5 ft. nylon strap, buckle, 4 wire nuts, and 6 ft. of #20 stretch tape. #### #20 stretch tape High temperature self-fusing silicone rubber tape for mounting Thermal-Ribbons to pipes. 1" wide rolls, 6 or 36 foot lengths. #### #6 RTV adhesive Room temperature vulcanizing adhesive for attaching Thermal-Ribbons to surfaces. 3 oz. (89 ml) tube. #### **Specifications** Body material: Silicone rubber with polyimide backing. #### Temperature range: RTD: -62 to 200°C (-80 to 392°F). Thermistor: -45.5 to 135°C (-50 to 275°F). Leadwires: AWG 24, silicone rubber. Moisture resistance: Meets MIL-STD-202, Method 104, Test Condition B. #### Model numbers | Element | | | Model | |-------------|------------------------------|----------|-----------| | RTDs | | | | | Platinum | 100 Ω ±0.1% at 0°C | 0.00391 | S464PB | | Platinum | 100 Ω ±0.1% at 0°C | 0.00385 | S467PD | | (Meets El | N60751, Class B) | | | | Platinum | 1000 Ω ±0.1% at 0°C | 0.00385 | S468PF | | Nickel-iron | 1000 Ω ±0.12% at 70°F | 0.00527 | S462FB | | Nickel-iron | 2000 Ω ±0.12% at 70°F | 0.00527 | S463FC | | HW | 3000 Ω at -30.2°C | 0.00262 | S100001PX | | Thermistors | 5 | R25/R125 | | | Thermistor | 2,252 Ω ±1% at 25°C | 29.2 | TS436TA | | Thermistor | 10,000 Ω ±1% at 25°C | 23.5 | TS437TB | #### Specification and order options | S467PD |
Model number from table | | |---------------------------------|--|--| | Z | Number of leads: | | | | Y = 2 leads | | | | Z = 3 leads (RTD only) | | | | YS = 2 leads, stainless steel braid | | | | ZS = 3 leads, stainless steel braid (RTD only) | | | 36 | Lead length in inches | | | Α | Adhesive backing: | | | | A = No adhesive | | | | B = Pressure-sensitive adhesive | | | S467PDZ36A = Sample part number | | | **▼**= STANDARD OPTIONS ## **Humidity Sensor/Transmitter Assembly** #### Overview Minco humidity and humidity/temperature transmitters are designed using an advanced microprocessor. Digital signal processing allows these transmitters to precisely match the characteristics of the humidity sensor to a wide range of RH and temperature values found in the many applications the product serves. The humidity sensor is composed of an integrated circuit (IC) with a stable polymer element and platinum RTD that is used for temperature compensation. This sensor offers outstanding resistance to airborne contaminant and chemicals, and is protected by a sintered stainless steel filter which resists condensation. - · Wall/Duct/OSA mounting configurations - Accuracies of ±1% or ±2% RH - Temperature compensated - Temperature output option - Two-point field calibration - NIST traceable calibrations #### **Applications** Building environmental control systems (HVAC), hospitals, food storage, warehouses, clean rooms, pharmaceutical, freezers, drying equipment, and emissions monitoring. #### **Specifications** #### **Ambient Temperature:** Operating: Room: -10 to 150°F (-23 to 65°C), non-condensing. Wall/Duct/OSA: -10 to 185°F (-23 to 85°C), non-condensing. Storage: Room: -58 to 150°F (-50 to 65°C), non-condensing. Wall/Duct/OSA: -58 to 185°F (-50 to 85°C), non-condensing. Supply voltage: 9.5 to 35 VDC, non-polarized. Voltage effect: ±.001% of span/volt from 9.5 to 35 VDC. **Loop resistance:** The maximum allowable resistance of the signal-carrying loop, including extension wires and load resistors, is given by this formula: $R_{loopmax} = (V_{supply} - 9.5)/0.02$ AMPS. For example, if supply voltage is 24 VDC, the loop resistance must be less than 725 Ω . Adjustments: Zero and span field adjustments, non-interacting. **Time Constant:** 50 seconds in slow moving air. **Connections:** Screw terminals (22-14 AWG wire). Weight: Room: 0.19 lb (.084 kg). Wall/Duct/OSA: 1.20 lb (0.55 kg). Minimum output current: 3.5 mA Maximum output current: 23 mA. ## **Humidity Sensor/Transmitter Assembly** #### **Humidity Transmitter AH429 and AH439** **Output:** 4-20 mA DC = 0% to 100% RH. Sensing Element: Capacitive monolithic IC. **Accuracy:** Includes temperature, linearity, hysteresis, and repeatability. $\pm 1\%$ from 10% to 80% RH @ 25 to 35°C or ±2% from 0% to 90% RH @ 25°C (±3% from 0% to 90% RH @ 15 to 50°C) (±5% from 0% to 90% RH @ 0 to 82°C) #### **Temperature Transmitter (AH439 only)** Output: 4-20 mA DC over the specified temperature range. Sensing element: 1000Ω platinum; 2 lead resistance thermometer, 0.00385 TCR. **Accuracy:** Includes resistance thermometer tolerance, calibration accuracy, linearity, and ambient temperature effects. ±.75% of Temptran[™] span for 32 to 122°F ambient. $\pm 1.50\%$ of Temptran $^{\text{\tiny M}}$ span for -13 to 185 $^{\text{\tiny SF}}$ ambient. #### **AH429 Specification and order options** | ▼ AH429 | Model number: | | | |----------------|--|--|--| | R | Enclosure | | | | | ▼ D: Duct mount, 8" probe length ▼ O: Outside Air/Wall mount, 4" probe length with shield, weather resistant enclosure | | | | | ▼ S: Space mount ▼ W: Wall mount, 4" probe length, weather resistant enclosure R: Remote probe, 4" probe length | | | | 1 | Output: 4 to 20 mA DC | | | | N10 | Calibration accuracy (humidity transmitter) ▼ N10: ±1% from 10% to 80% (25 to 35°C) with NIST certificate N20: ±2% from 0% to 90% (25 to 35°C) with NIST certificate ▼S20: ±2% from 0% to 90% (25 to 35°C) | | | | T1 | Sensing element cover (omitted on "S" space mount models) T0= Sintered stainless steel; pressed on cover ▼T1= Sintered stainless steel; screw on cover T2= Slotted stainless steel; screw on cover (NA on "O" outside air models) | | | | | To order enclosure D, O, S or W, stop here. | | | | | enclosure R (remote probe), add: | | | | Α | Probe mounting location A = Side mounting B = Bottom mounting | | | | 48 | Remote probe cable length (in inches) 48" and 96" are standard lengths | | | | AH429R11 | N10T1A48 = Sample part number | | | AH429 = Humidity Transmitter AH439 = Humidity/Temperature Transmitter #### **AH439 Specification and order options** | ▼ AH439 | Model | number | | | | |--|--|--|---|--|--| | D | Enclos | | | | | | | ▼ D:
▼ O: | Duct mo | Air/Wall m | obe length
nount, 4" probe length
er resistant enclosure | | | | ▼ S:
W: | Space m | | bbe length, weather | | | | R: | resistant | enclosure | 2 | | | 1 | - | | <u> </u> | probe length | | | 1 | <u> </u> | ts: 4 to 20 | | | | | N10 | ▼ N10 | : ±1% from
with NIS
: ±2% from
with NIS | m 10% to
T certifica
m 0% to 9
T certifica | 0% (25 to 35°C) | | | Α | | | ansmitter | | | | , and the second | ▼FN: | -20°F | to | 140°F | | | | S: | 0°F | to | 100°F | | | | ▼A: | 20°F | to | 120°F | | | | BI· | 30°F | to | 130°F | | | | KK: | | to | 180°F | | | | ▼ N· | 30°F | to | 122°F | | | | H· | 40°F | to | 90°F | | | | Mor | e tempera | ature rang | e codes starting on | | | T1 | page 4-20 or www.minco.com Sensing element cover (omitted on "S" space mount models) T0= Sintered stainless steel; pressed on cover ▼T1= Sintered stainless steel; screw on cover T2= Slotted stainless steel; screw on cover (NA on "O" outside air models) | | | | | | To order enclosure D, O, S or W, stop here. To order enclosure R (remote probe), add: | | | | | | | А | | | g locatior
Inting | B = Bottom mounting | | | 48 | | | cable leng
re standar | gth (in inches)
d lengths | | | AH439D1 | N10AT | 1A48 = Sa | ample par | t number | | **▼**= STANDARD OPTIONS ### Hazardous Area Humidity Assembly #### Overview Models AH71_, AH72_, and AH73_ series are 2-wire temperature compensated humidity transmitters that are FM and CFM approved for use in hazardous locations. Intrinsically safe models are available with an optional temperature transmitter output. The AH73 is also available with an optional digital display for remote indication of relative humidity and temperature. The transmitters utilize a thin film capacitive humidity sensor which provides outstanding sensitivity and chemical robustness. The transmitter converts the humidity sensor's signal into a 4 to 20 mA DC current, which changes proportionally from 4 mA at 0% RH to 20 mA at 100% RH. The optional temperature loop produces a second 4 to 20 mA DC output where the current changes from 4 mA at the lowest temperature of the range, to 20 mA at the top of the temperature range. The leads that supply power also carry the current signal. - Accuracy of ±2.5% RH - Temperature compensated - · Temperature output option - Two-point field calibration - · NIST traceable calibrations #### **Applications** Building automation systems (HVAC), hospitals, food storage, warehouses, clean
rooms, pharmaceutical, drying equipment, and emissions monitoring. #### **Specifications** #### Output(s): Humidity: 4 to 20 mA DC = 0% to 100% RH. Temperature: 4 to 20 mA DC over specified range (optional) Humidity Range: 0 - 100% RH #### **Sensing Element:** Humidity: Thin film capacitive element. Temperature: 1000 ohm platinum RTD, 0.00385 TCR Temperature Effect: ±0.03% RH/°C ±1% from 10°C to 85°C #### **Operating Temperature:** #### Transmitter: -40 to 176°F (-40 to 80°C), non-condensing. -4 to 176° F (-20 to 80° C), non-condensing, model AH73. Sensor: -40 to 302°F (-40 to 150°C). #### **Storage Temperature:** -58 to 185°F (-50 to 85°C), non-condensing. #### Supply voltage: 9.5 to 28 VDC for intrinsically safe (IS) models. 16.5 to 28 VDC for explosion proof (XP) models. Voltage effect: ±0.001% of span/volt from 9.5 to 28 VDC. **Loop resistance:** The maximum allowable resistance of the signal-carrying loop, including extension wires and load resistors, is given by this formula: IS: $R_{loopmax} = (V_{supply} - 9.5)/0.02$ AMPS. For example, if supply voltage is 24 VDC, the loop resistance must be less than 725 . XP: $R_{loopmax} = (V_{supply} - 16.5)/0.02$ AMPS. For example, if supply voltage is 24 VDC, the loop resistance must be less than 375 . **▼**= STANDARD OPTIONS ## Hazardous Area Humidity Assembly **Accuracy:** Includes linearity, hysteresis, repeatability, and voltage effects. Humidity: $\pm 2.5\%$ from 10% to 80% RH @ 25°C, $\pm 3.5\%$ from 80% to 90% RH @ 25°C. Temperature: $\pm 0.5^{\circ}F(0.27^{\circ}C)$ @ 77°F (25°C) or +/- 0.75% of span, whichever is greater. Adjustments: Zero and Span field adjustments, non-interacting. Time Constant: 50 seconds in slow moving air. Connections: Screw terminals (22-14 AWG wire). Weight: AH71_ 2.84 lbs (1.29 kg). AH72_, AH73_ 4.46 lbs (2.02 kg). Min. output current: 3.8 mA. Max. output current: 22 mA. Filter: 60 micron stainless-steel sintered filter (replacement P/N : AC103512) **Factory Mutual Approvals:** Explosionproof with intrinsically safe sensor: Suitable for the following hazardous area locations: Class I, Division 1, 2, Groups B, C, D Class II, Division 1, 2, Groups E, F, G Class III, Division 1, 2 Intrinsically safe installation: Suitable for the following hazardous area locations: Class I, Division 1, 2, Groups A, B, C, D Class II, Division 1, 2, Groups E, F, G Class III, Division 1, 2 Class I, Zone 0, AEx ia IIC T4 Non-Incendive: Suitable for the following hazardous area locations: Class I, Division 2, Groups A, B, C, D Class II, Division 2, Groups F, G Class III, Division 2 Transmitter entity parameters: $V_{max} = 28$ volts; $I_{max} = 100$ mA; $C_i = 0.037$ μF and $L_i = 0$ mH. #### **Transmitter ranges:** | Code | Transmitter range | |------|----------------------------| | ▼ NT | No temperature transmitter | | ▼EN | -20°F to 140°F | | S | 0°F to 100°F | | ▼A | 20°F to 120°F | | BI | 30°F to 130°F | | KK | 30°F to 180°F | | ▼N | 32°F to 122°F | | Н | 40°F to 90°F | #### **Accessories:** Sintered Filter Replacement Part Number: AC103512 Slotted Filter Replacement Part Number: AC103513 Pipe Mounting Kit for AH72/AH73 Part Number: AC102765 Wall Mounting Kit for AH71 Part Number: AC103168 Duct Mounting Kit for AH71 Part Number: AC103253 #### Specification and order options | AH73 | Model ni | | | |---------|--|--|-------------------------| | | ▼ AH71 | Industrial grade humidit | | | | | with optional temperature transmitter,
CH106 connection head, display NA
Industrial grade humidity transmitter | | | | AH72 | | | | | | with optional temperature transmitter, | | | | | connection head, display NA | | | | ▼ AH73 | Industrial grade humidity transmitter | | | | | with optional temperature connection head, displa | | | | Duals a alt | · · · · · · · · · · · · · · · · · · · | y avaliable | | 1 | Probe dia
▼ 1 = 0. | | | | Da | Pipe Thre | | | | P3 | Code | Process | Conduit | | | ▼ P3 | 1/2 - 14NPT | 1/2 - 14NPT | | | P4 | 1/2 - 14NPT | 3/ ₄ - 14NPT | | | P5 | $G_{1/2}A$ | 1/2 - 14NPT | | | P6 | G1/2A | 3/ ₄ - 14NPT | | L120 | Probe lei | ngth | | | | ▼ L60 = | 6" | | | | ▼L120= | 12" | | | T1 | Filter typ | | | | | | ntered stainless steel | | | HT490 | T2= Slotted stainless steel | | | | H1490 | Transmitter model number ▼ HT480 = Explosionproof with intrinsically safe sensor (transmitter code NT only) | | | | | | | | | | ▼HT490 | = Intrinsically safe | ac , , | | F | Display | , | | | | C = D | isplay, metric units (AH73 | | | | | isplay, English units (AH7 | | | | | o display (AH71_ and AH | 72_ series only) | | 1 | Signal output | | | | | ▼1 = 4 to 20mA | | | | N25 | Calibration accuracy (humidity transmitter) | | | | | | 2.5% from 10% to 80% (2 | 5°C) | | | | NIST certificate
2.5% from 10% to 80% (2 | 5°C) | | EN | Temperature transmitter range from table | | | | | | T490F1N25EN = Sample | | | A11/31F | SLIZUIII | 14701 HNZJEN – Jailipie | - part number | **▼**= STANDARD OPTIONS ### **Intrinsically Safe Humidity Assembly** #### Overview Models AH74 and AH75 are 2-wire temperature compensated humidity transmitters that are FM and CFM approved as intrinsically safe for use in hazardous locations. Both models are available with an optional temperature transmitter output. AH75 incorporates a digital display for remote indication of relative humidity and temperature. The transmitters utilize a thin film capacitive humidity sensor which provides outstanding sensitivity and chemical robustness. The transmitter converts the humidity sensor's signal into a 4 to 20 mA DC current, which changes proportionally from 4 mA at 0% RH to 20 mA at 100% RH. The optional temperature loop produces a second 4 to 20 mA DC output where the current changes from 4 mA at the lowest temperature of the range, to 20 mA at the top of the temperature range. The leads that supply power also carry the current signal. - · Accuracy of ±2.5% RH - · Temperature compensated - Temperature output option - Two-point field calibration - · NIST traceable calibrations #### **Applications** Building automation systems (HVAC), hospitals, food storage,warehouses, clean rooms, pharmaceutical, drying equipment, and emissions monitoring. #### **Specifications** #### Output(s): Humidity: 4 to 20 mA DC = 0% to 100% RH. Temperature: 4 to 20 mA DC over specified range (optional). Humidity Range: 0 - 100% RH #### **Sensing Element:** Humidity: Thin film capacitive element. Temperature: 1000 ohm platinum RTD. Temperature Effect: ±0.03% RH/°C ±1% from 10°C to 85°C #### **Operating Temperature:** Transmitter: -40 to 176°F (-40 to 80°C), non-condensing. -4 to 176°F (-20 to 80°C), non-condensing, model AH75. enson. -40 to 176°F (-40 to 80°C), #### **Storage Temperature:** -58 to 185°F (-50 to 85°C), non-condensing. Supply voltage: 9.5 to 28 VDC. Voltage effect: ±0.001% of span/volt from 9.5 to 28 VDC. **Loop resistance:** The maximum allowable resistance of the signal-carrying loop, including extension wires and load resistors, is given by this formula: $R_{loopmax} = (V_{supply} - 9.5)/0.02$ AMPS). **Accuracy:** Includes linearity, hysteresis, repeatability, and voltage effects. Humidity: $\pm 2.5\%$ from 10% to 80% RH @ 25°C, $\pm 3.5\%$ from 80% to 90% RH @ 25°C. Temperature: $\pm 0.5^{\circ}F(0.27^{\circ}C)$ @ 77°F (25°C) or +/- 0.75% of span, whichever is greater. **Adjustments:** Zero and Span field adjustments, non-interacting. **Time Constant:** 50 seconds in slow moving air. Connections: Screw terminals (22-14 AWG wire). #### Weight: AH74 0.54 lbs (245 g). AH75 0.61 lbs (276 g). **Min. output current:** 3.8 mA. Max. output current: 22 mA. **Filter:** 60 micron stainless-steel sintered filter (replacement P/N: AC103512) #### **Factory Mutual Approvals:** Intrinsically safe: Suitable for the following hazardous area locations: Class I, Division 1, Groups A, B, C, D Class I, Zone 0, AEx ia IIC T4 Non-Incendive: Suitable for the following hazardous area locations: Class I, Division 2, Groups A, B, C, D #### Transmitter entity parameters: $V_{max} = 28 \text{ volts}; I_{max} = 100 \text{ mA}; C_i = 0.037 \,\mu\text{F} \text{ and } L_i = 0 \text{ mH}.$ # Intrinsically Safe Humidity Assembly #### **Transmitter ranges:** | Code | Transmitter range | | |-------------|----------------------------|--| | ▼ NT | No temperature transmitter | | | EN | -20°F to 140°F | | | S | 0°F to 100°F | | | ▼ A | 20°F to 120°F | | | BI | 30°F to 130°F | | | KK | 30°F to 180°F | | | N | 32°F to 122°F | | | Н | 40°F to 90°F | | #### Specification and order options | | · | |-------|---| | AH75 | Model Number: ▼AH74 - Humidity Transmitter with Optional Temperature Transmitter , No Display ▼AH75 - Humidity Transmitter with Optional Temperature Transmitter, with Display | | 1 | Probe Diameter: 1 = 0.375" | | СЗ | Probe Location / Cable Bushings Option: Please refer to dimensional drawings for probe
Location. C1 = Probe Location A (Rear) / Single Cable Gland C2 = Probe Location A (Rear) / Dual Cable Glands ▼C3 = Probe Location A (Rear) / Single Conduit Fitting, 1/2" NPT ▼C4 = Probe Location A (Rear) / Dual Conduit Fittings, 1/2" NPT ▼ C5 = Probe Location B (Bottom) / Single Cable Gland ▼ C6 = Probe Location B (Bottom) / Dual Cable Glands ▼ C7 = Probe Location B (Bottom) / Dual Conduit Fittings, 1/2" NPT ▼ C8 = Probe Location B (Bottom) / Dual Conduit Fittings, 1/2" NPT Note: If a temperature loop is desired, dual cable glands or dual conduit fittings must be selected unless special cable is used during installation. Please refer to National Electrical Code ANSI/NFPA 70 for installation in accordance with US requirements, or Canadian Electrical Code, C22.1 | | L40 | for installation in accordance with Canadian requirements. Probe Length: ▼L40 = 4" | | | | | T1 | Filter Type: ▼ T1 = Sintered Stainless Steel T2 = Slotted Stainless Steel | | HT490 | Transmitter Model Number: ▼ HT490 = Intrinsically Safe Transmitter | | F | Display: C = Display, Metric Units (AH75_ Series Only) ▼ F = Display, English Units (AH75_ Series Only) ▼ N = No Display | | 1 | Signal Output: ▼1 = 4-20mA | | N25 | Calibration Accuracy: ▼ N25 = ±2.5% from 10% to 80% (25°C) with NIST Certificate S25 = ±2.5% from 10% to 80% (25°C) | | NT | Temperature Transmitter Range from table: ▼A, NT | | AH751 | C3L40T1HT490F1N25NT = Sample part number | | | | ## Dimensions: Probe Location A #### **Probe Location B** ### Thermal Vial™ Temperature Sensing System #### Overview - Ideal for ultralow freezers, laboratories, blood banks, walk-in freezers and refrigerators, even incubators anywhere accurate sensing of the contents instead of the air is a vital concern. - Sealed Polyethylene Thermal Vial™ eliminates spillage and contamination. Simply fill with fluid such as ethylene glycol, alcohol, water, or a cryopreservative to accurately emulate the material being stored or processed. - Large (50 mm x 50 mm) footprint of the single well vial provides stability on a shelf or rack. Holds 175 ml (6 oz) of fluid. Other vial configurations are available. See next page. - Platinum RTD probe is constructed of 316 Stainless Steel and operates to -200°C (-328°F). - Metal shielded cable is rugged and washdown proof. - 4 to 20 mA transmitter is match calibrated to the RTD for improved system accuracy. - System accuracy is a variable - NIST certificate and calibration data supplied at no additional cost. - · Additional accessories available. - · Customizable for validation requirements. - Connection box and indicator are polycarbonate and NEMA 4X sealed to be washdown proof. #### **Specifications** Probe case: Stainless steel. Element: Platinum. Resistance (excluding leadwire resistance): PM platinum: 100.00 Ω ±.06% at 0°C (32°F) (Class A). PD platinum: 100.00 Ω ±.12% at 0°C (32°F) (Class B). PF platinum: $1000.00 \Omega \pm .12\%$ at 0°C (32°F). **TCR:** .00385 Ω/Ω /°C nominal from 0°C to 100°C. Operating temperature range: Probe and vial: -200 to 120° C (-328 to 248° F). Transmitter: -25 to 85° C (-13 to 185° F). Insulation resistance: 1000 megohms minimum at 500 VDC, leads to probe case. Leads: AWG #22, stranded, TFE insulated, with TFE jacket overall. **Thermal vial:** Polyethylene bottle with cap. Thermowell: Delrin material. **Transmitter:** 4-20 mA output; 8.5 to 35 VDC loop powered. Connection box: Polycarbonate enclosure, NEMA 4X. #### Specification and order options | AS103282 | Model number | |------------|---| | PM | Sensing element, .00385 TCR: ▼ PM = 100 Platinum ±.06%, Class A PD = 100 Platinum ±.12%, Class B PF = 1000 Platinum ±.12% | | 60 | Cable length in inches ▼: 60, 120 | | D | Vial configuration: ▼ S = Single thermowell, standard vial ▼ D = Dual thermowell T = Triple thermowell ▼ M = Single thermowell, miniature vial L = Single thermowell, large vial | | С | Connection box type: ▼ C = Indicating °C ▼ B = Non-indicating | | 20 | System accuracy:
75 = .75% of span 50 = .50% of span
▼ 20= .20% of span or .1°C, whichever is greater | | EZ | Temptran temperature range code: ▼ EZ = -100/0°C (-148/32°F) ▼ M = -50/50°C (-58/122°F) C = 0/100°C (32/212°F) More ranges starting on page 4-20. | | AS103282PN | M60DC20EZ = Sample part number | ## Thermal Vial™ Accessories #### **Available Accessories** | | | Jg.c | | |-------------|----------|---------|----------| | Description | Capacity | | Model | | Single | 6 oz. | 175 ml | AC101394 | | Dual | 8 oz. | 250 ml | AC102026 | | Triple | 8 oz. | 250 ml | AC102647 | | Mini | 2 oz. | 60 ml | AC103316 | | Large | 32.07 | 1000 ml | AC102551 | | Description | Model | |--------------------------|----------| | Single well bracket | AC101540 | | Dual/triple well bracket | AC102732 | | Air sensor bracket | AC102074 | | Description | Model | |-------------------------|----------| | Loop-powered indicating | TI350 | | Non-indicating | CH102777 | ## Refrigeration & Freezer Temperature System #### Overview - Ideal for refrigerated rooms, freezers, cold storage facilities and laboratories — anywhere an accurate, rugged, and weatherproof temperature sensor is needed. - 100 platinum RTD probe is constructed of 316 stainless steel to be resistant to most chemicals, including ammonia. Operates to -452°F (-269°C). - 4 to 20 mA transmitter is epoxy potted to protect circuitry from condensation and ice. Operates in ambient temperatures down to -13°F (-25°C). - Transmitter is match calibrated to RTD for 0.75% system accuracy. Free NIST certificate. - Enclosure is gasketed and moisture resistant. - RTD probe is available in lengths ranging from 2 inches to 48 inches, and the probe can be center-mounted for throughthe-wall installation, or end-mounted for flush-to-the-wall mounting. #### **Specifications** #### Temperature range: Probe: -269 to 260°C (-452 to 500°F). Transmitter: -25 to 85°C (-13 to 185°F). RTD probe: 100 platinum, 0.00385 TCR. Transmitter: 4-20 mA output, 8.5 to 35 VDC loop powered. #### Specification and order options | AS100279 | Assembly number | | |-----------|--|--| | PD | 100 platinum RTD | | | 67 | Probe length: Specify in 0.1" increments (Ex: 67 = 6.7 inches) | | | M | Temperature range for 4-20 mA output: $M = -50 \text{ to } 50^{\circ}\text{C}$ (-58 to 122°F) $AD = -40 \text{ to } 48.9^{\circ}\text{C}$ (-40 to 120°F) $AD = -30 \text{ to } 50^{\circ}\text{C}$ (-22 to 122°F) $AD = -30 \text{ to } 50^{\circ}\text{C}$ (0 to 100°F) $AD = -10 \text{ to } 40^{\circ}\text{C}$ (14 to 104°F) $AD = -10 \text{ to } 40^{\circ}\text{C}$ (14 to 104°F) $AD = -10 \text{ to } 40^{\circ}\text{C}$ Other ranges are available starting on page 5-20. | | | AS100279P | D67M = Sample part number | | ### Fluid Immersion Temperature Sensors #### Overview Immersion sensors include stainless steel thermowells for insertion directly into fluid streams. The sensing probe may be removed without breaking the fluid seal. Brass thermowells are also available. See page 4-2 for optional 4 to 20 mA temperature transmitters. #### **Specifications** Temperature range: -45.5 to 260°C (-50 to 500°F). Leadwires: AWG 22, PTFE insulated, 4" (100 mm) long. Thermowell pressure rating: 1880 psi (130 bar). Moisture resistance: Meets MIL-STD-202, Method 104, Test Condition B. #### Model numbers | Element | | | TCR
/ /°C | Model number | |------------------------|-----------------|--------------------------|--------------|--------------| | Platinum | 100 | ±0.1% at 0℃ | 0.00391 | ▼ S478PB | | Platinum
(Meets EN6 | 100
50751, C | ±0.1% at 0°C
Class B) | 0.00385 | ▼ S479PD | | Platinum | 1000 | ±0.1% at 0℃ | 0.00385 | ▼S480PF | | Platinum | 1000 | ±0.1% at 0℃ | 0.00375 | ▼ S490PW* | | Nickel-iron | 1000 | ±0.12% at 70°F | 0.00527 | ▼ S476FB* | | Nickel-iron | 2000 | ±0.12% at 70°F | 0.00527 | S477FC* | | HW | 3000 | at -30.2°C | 0.00262 | S100061PX* | ^{*} Maximum temperature is 130°C (266°F). Note: These sensors are intended for use in slow-moving fluid streams. For applications where fluid velocity exceeds 3 ft/s, you may need to use a thermowell assembly as an alternative. Contact Minco Sales and Customer Service for additional information. #### Specification and order options: #### Fluid immersion temperature sensors | S479P | D Model number from table | | | | |--------|-----------------------------------|--|--|--| | Υ | Number of leads: | | | | | | ▼Y = 2 leads | | | | | | Z = 3 leads | | | | | 60 | Thermowell length U: | | | | | | Specify in 0.1" increments | | | | | | (Ex: 60 = 6.0 inches) | | | | | | ▼: 20, 30, 60 | | | | | | Contact factory for other lengths | | | | | S479PE | S479PDY60 = Sample part number | | | | #### Replacement stainless steel thermowells | TW488 | Model number | | |-------------------------------|--|--| | U | | | | 60 | Thermowell length U: Specify in 0.1" increments (Ex: 60 = 6.0 inches) Standard thermowell lengths are 3" and 6", contact factory for other lengths | | | TW488U60 = Sample part number | | | #### To order with transmitter, add | TT111 | Transmitter Models | | | | |---------|---|--|--|--| | | TT111: Fixed Range
(2 leads) | | | | | | TT211: Fixed Range (2 leads) | | | | | | TT321: Fixed Range (3 leads) | | | | | | Contact for other transmitter options. | | | | | Α | Temperature Range Code: | | | | | | A = 20°F to 120°F (-6.7°C to 48.9°C) | | | | | | Contact for complete list of available temp. codes. | | | | | 1 | Calibration: | | | | | | 1 = Nominal Calibration | | | | | | 2 = Match Calibrated, | | | | | | 0.75% Total System Accuracy | | | | | | 3 = Match Calibrated, | | | | | | 0.5% Total System Accuracy | | | | | | 4 = Match Calibrated, | | | | | | 0.2% or 1°C Total System Accuracy | | | | | | Contact for other calibration options. | | | | | TT111A1 | = Sample part number addition | | | | ### Elements & Probes #### Overview These models feature fast-responding RTD or thermistor elements in aluminum cases (except stainless steel on S482PW) with PTFE insulated leadwires. They can be assembled into probes or used separately as all-purpose sensors. Probes consist of elements assembled into stainless steel extension tubes. They are not suitable for direct fluid immersion but may be used with thermowells. See Section 3 for thermowell options. See Section 4 for optional 4 to 20 mA temperature transmitters. ### Specification and order options: #### **Probes** | S411PB | Model number from table | | | |----------|---|--|--| | 60 | Case length: Specify in 0.1" increments | | | | | (Ex: 60 = 6.0 inches) | | | | | Minimum length is 3" | | | | Z | Number of leads:
Y = 2 leads | | | | | Z = 3 leads (platinum only) | | | | 4 | Lead length in inches | | | | S411PB60 | S411PB60Z4 = Sample part number | | | #### **Element** MODEL S482PW IS 2.4" (60.3 mm) LONG #### **Specifications** Temperature range: -45.5 to 135°C (-50 to 275°F). **Leadwires:** AWG 22, PTFE insulated. Standard lengths are 4", 12" and 18". **Moisture resistance:** Meets MIL-STD-202, Method 104, Test Condition B. **Insulation resistance:** 1000 megohms min. at 500 VDC, leads to case. #### **Model numbers** | Element | | | TCR | Elements | Probes | |-------------|----------|----------------|----------------------|-----------|-----------| | | | | Ω /Ω/°C | | | | RTDs | | | | | | | Platinum | 100 | ±0.1% at 0°C | | S402PB | 411PB | | Platinum | 100 | ±0.1% at 0°C | 0.00385 | S458PD | S460PD | | (Meets EN | 60751, C | Class B) | | | | | Platinum | 1000 | ±0.1% at 0°C | 0.00385 | S459PF | S461PF | | Platinum | 1000 | ±0.1% at 0°C | 0.00375 | S482PW | S485PW | | Nickel-iron | 1000 | ±0.12% at 70°F | 0.00527 | S400FB | S409FB | | Nickel-iron | 2000 | ±0.12% at 70°F | 0.00527 | S401FC | S410FC | | HW | 3000 | at -30.2°C | 0.00262 | S100057PX | S100837PX | | Thermistors | | | R25/ _{R125} | | | | Thermistor | 2,252 | ±1% at 25℃ | 29.2 | TS438TA | TS440TA | | Thermistor | 10,000 | ±1% at 25℃ | 23.5 | TS439TB | TS441TB | #### **Elements** | S458PD | Model number from table | | |-------------------------------|--|--| | Z | Number of leads:
Y = 2 leads
Z = 3 leads (platinum only) | | | 4 | Lead length in inches | | | S458PDZ4 = Sample part number | | | #### To order with transmitter, add | TT111 | Transmitter Models | | | | | |-------|---|--|--|--|--| | | TT111: Fixed Range (2 leads) | | | | | | | TT211: Fixed Range (2 leads) | | | | | | | TT321: Fixed Range (3 leads) | | | | | | | Contact for other transmitter options. | | | | | | Α | Temperature Range Code: | | | | | | | $A = 20^{\circ}F \text{ to } 120^{\circ}F \text{ (-6.7°C to } 48.9^{\circ}C)$ | | | | | | | Contact for complete list of available temp. codes. | | | | | | 1 | Calibration: | | | | | | | 1 = Nominal Calibration | | | | | | | 2 = Match Calibrated, | | | | | | | 0.75% Total System Accuracy | | | | | | | 3 = Match Calibrated, | | | | | | | 0.5% Total System Accuracy | | | | | | | 4 = Match Calibrated, | | | | | | | 0.2% or 1°C Total System Accuracy | | | | | | | Contact for other calibration options. | | | | | ### Temptran[™] 4 to 20 mA Transmitters Most HVAC sensors are available with companion 4 to 20 mA transmitters. See page 4-2 for suitable models. (Room air thermometers use model TT115, which has the same specifications as TT111). Temptran™ temperature transmitters convert low-level RTD output to a standard current signal that is immune to lead resistance and electrical noise. You can get accurate readings from points thousands of feet away. #### How to order transmitters To order HVAC/R sensors with integral transmitters, specify both the RTD and the Temptran part numbers. #### **High-accuracy calibration** Standard transmitters are calibrated to the nominal resistance values of the RTD at the zero and span points. Total system error includes the tolerance of both the transmitter and the RTD sensor. If you order Minco Temptrans calibrated to the actual resistance of the RTD (as measured in Minco's metrology lab), this effectively subtracts the sensor tolerance from system accuracy specifications. For example, consider a transmitter with a range of 0 to 500°C. The transmitter itself is accurate to $\pm 1.0^{\circ}$ C ($\pm 0.2\%$ of span, including calibration accuracy and linearity). The RTD interchangeability contributes an additional error of $\pm 0.3^{\circ}$ C at 0°C and $\pm 2.8^{\circ}$ C at 500°C. Total system error would be $\pm 1.3^{\circ}$ C at 0°C and $\pm 3.8^{\circ}$ C at 500°C. When you calibrate the sensor and transmitter as a set, the sensor error disappears, reducing system error to $\pm 1.0^{\circ}$ C over the full range — all for a nominal extra cost. #### 0.75% guaranteed accuracy Minco guarantees a system accuracy (current signal vs temperature) of 0.75% of span when you order specially calibrated Temptrans with any RTD in the HVAC/R Sensors Section. (An RTD with standard transmitter will deviate about 1-2% of span.) Tighter accuracies are available on special order. Transmitters are mounted in the junction box on duct sensors, or in the connection head of fluid immersion sensors. Outside air thermometers and Thermal-Ribbons: Transmitters are furnished separately. Install in an enclosure near the sensor, but away from excessive ambient temperatures. Full size wall mount thermometers use the TT115 circuit-board style Temptran. The enclosure is thermally designed to minimize heating of the sensor by transmitter electronics. #### Free NIST traceability With each matched sensor/transmitter set, Minco sends you calibration data traceable to the National Institute of Standards & Technology. This helps you comply with ISO 9001 and other quality standards. #### Recalibration Minco prints RTD resistance values right on the Temptran label to simplify recalibration. You simply connect a resistance decade box or "RTD simulator" in place of the RTD, dial in the correct values, and adjust zero and span. Because Minco RTDs shift less than 0.05°F per year in a typical HVAC installation, the printed values remain valid for many years. RTD resistances are printed on Temptran Labels for easy recalibration of zero and span. A standard Temptran shows nominal values. A specially calibrated Temptran shows actual resistance of the serialized, connected RTD See Section 4 for complete details and ordering information. ## ► SECTION 8: THERMAL-RIBBONS™ - Fast response surface sensing in aerospace, medical, and industrial devices - Thin, flexible RTDs and thermocouples offer easy, non-invasive installation - Rugged laminated construction for use in extreme environments - Polyimide, silicone rubber, Mylar™ insulation #### **Section 8: Thermal-Ribbons™** | Thermal Tabs™ | 8-2 to 8-3 | |------------------------------|------------| | Thermal Ribbons™ | 8-4 to 8-5 | | Thermistor Thermal Ribbons | 8-6 | | Thermocouple Thermal Ribbons | 8-6 | | Installation and accessories | 8-7 | ### Thermal Tab™ Sensors Install these compact sensors anywhere for accurate point sensing and fast response. All Thermal-Tab modules use a thin-film RTD element. All Thermal-Ribbon models conform to EN60751 Class B tolerance when ordered with a PD platinum element. Time constant in moving water at 1m/sec is <1.0 sec for polyimide products and 1.5 sec for silicone rubber products. - Fast response surface sensing in aerospace, medical and industrial devices - Rugged lamination construction except S665 and S667 - Polyimide, silicone rubber or Mylar™ insulation - All models are RoHS compliant #### Thermal-Tab Specifications | Dimensions | Element | | Temperature | | Leadwire | | | |--|----------------------|--|------------------------------|---|-------------------------|--|----------------| | W x L x T _{max} | options | Insulation | range | Leadwires | Configuration | Features | Model | | 0.20 x 0.50 x 0.08"
(5 x 12 x 2 mm) | ▼: PD, PF | Polyimide with elastomer cover coat | -50 to 155°C
-58 to 311°F | AWG 26,
PTFE insulated | 2, 3
enter | Standard options
stocked for immediate
shipment | ▼ \$665 | | 0.20 x 0.60 x 0.12"
(5 x 15 x 3 mm) | ▼: PD, PF | Silicone rubber
with elastomer
cover and foil
backing | -50 to 155℃
-58 to 311℉ | AWG 24,
Silicone
insulated | 2, 3 enter | Waterproof; suitable for continuous immersion | S667 | | 0.20 x 0.60 x 0.08"
(5 x 15 x 2 mm) | ▼: PD, PF,
PW, PS | Polyimide | -50 to 200°C
-58 to 392°F | AWG 26, PTFE
or polyimide
insulated | 2 enter,
3,4 outside | Standard options
stocked for immediate
shipment | ▼ S17624 | | 0.28 x 0.60 x 0.08"
(7 x 15 x 2mm) | ▼: PD, PF,
PW, PS | Polyimide | -50 to 200°C
-58 to 392°F | AWG 26, PTFE
or
polyimide
insulated | 2, 3, 4
enter | All leadwires laminated into body for rugged applications | S239558 | | 0.20 x 0.60 x 0.08"
(5 x 15 x 2 mm) | ▼: PD, PF | Polyimide film | -50 to 260°C
-58 to 500°F | AWG 26, PTFE
or polyimide
insulated | 2 enter,
3,4 outside | Highest temperature capability | S100820 | | 0.28 x 0.60 x 0.08"
(7 x 15 x 2mm) | ▼: PD, PF | Polyimide film | -50 to 260°C
-58 to 500°F | AWG 26, PTFE
or polyimide
insulated | 2, 3, 4
enter | Highest temperature
capability; all leadwires
laminated into body for
rugged applications | S239559 | | 0.20 x 0.60 x 0.045"
(5 x 15 x 1.15 mm) | ▼: PD, PF | Polyimide film | -50 to 200°C
-58 to 392°F | AWG 26, PTFE or polyimide insulated | 2 enter,
3,4 outside | Thinnest profile | S100725 | | 0.28 x 0.60 x 0.10"
(7 x 15 x 2.5 mm) | ▼: PD, PF | Polyimide film | -50 to 200°C
-58 to 392°F | AWG 22, PTFE
or polyimide
insulated | 2 enter,
3,4 outside | Heavier leadwire for
applications requiring
ruggedized design | S100724 | | 0.40 x 0.80 x 0.08"
(10 x 20 x 2 mm) | ▼ : PD, PF | Polyimide film | -50 to 200°C
-58 to 392°F | AWG 26, PTFE
or polyimide
insulated | 2 enter,
3,4 outside | Larger surface area for
easier handling and
maximum adhesive bond | S100723 | | 0.40 x 0.80x .08"
(10 x 20 x 2mm) | ▼ : PD, PF | Polyimide film | -50 to 200°C
-58 to 392°F | AWG 26, PTFE
or polyimide
insulated | 2, 3, 4
enter | Larger surface area for
easier handling and
maximum adhesive bond;
all leadwires laminated
into body for rugged
applications | S239560 | | 0.40 x 0.80 x 0.08"
(10 x 20 x 2mm) | ▼ : PD, PF | Polyimide film | =50 to 260°C
58 to 500°F | AWG 26, PTFE
or polyimide
insulated | 2, 3, 4
enter | Larger surface area for
easier handling and
maximum adhesive bond;
Highest temperature
capability; all leadwires
laminated into body for
rugged applications | S239561 | | 0.40 x 0.80 x 0.08"
(10 x 20 x 2 mm) | ▼: PD, PF | Silicone rubber | -50 to 220°C
-58 to 428°F | AWG 26, PTFE
or polyimide
insulated | 2 enter,
3,4 outside | High temperature rating,
available with wide
range of element
options | S100721 | ### Thermal Tab™ Sensors #### Specifications, continued | Leadwire insulation codes | | | | |--|---|--|--| | S665, S667 | Leave blank | | | | \$17624, \$100721, \$100723,
\$100724, \$100725, \$100820,
\$239558, \$239559, \$239560,
\$239561 | ▼T = PTFE insulated wires
K= Polyimide insulated wires | | | #### Sensing elements | Sensing element specifications* | | | |--|---------------------------------|----| | Platinum (0.00385 TCR)
(EN60751, Class B) | 100 Ω ±0.12% at 0°C | PD | | Platinum (0.00385 TCR) | 100 Ω ±0.22% at 0°C | PE | | Platinum (0.00385 TCR) | 1000 Ω ±0.12% at 0°C | PF | | Platinum (0.00375 TCR) | 1000 Ω ±0.12% at 0°C | PW | | Platinum (0.00385 TCR) | 10,000 Ω ±0.12% at 0°C | PS | | Nickel-iron (0.00518 TCR) | 604 Ω ±0.26% at 0°C | FA | | Nickel (0.00618 TCR)
(DIN43760 NI100, Class | 100 Ω ±0.22% at 0°C s B) | NB | ^{*} See table on previous page for element options on each model. #### Specification and order options | S17624 | Model number from table | | | | |-----------|---|--|--|--| | PD | Sensing element from table | | | | | Z | Number of leads:
▼ Y = 2 leads ▼ Z = 3 leads (N/A on S25, S38)
X = 4 leads (N/A on S25, S38 or S665/S667) | | | | | Т | Leadwire insulation code from table at left | | | | | 12 | Lead length in inches: S665/S667: 60" max.
▼: 12, 36, 120 | | | | | А | Adhesive backing: | | | | | | ▼ A= No adhesive | | | | | | ▼ B = Pressure-sensitive adhesvie (PSA) | | | | | | Stop here for all models except S665 or S667.
For models S665 and S667, add: | | | | | | Compliancy:
C = RoHS Compliance | | | | | S665PDZT1 | 2AC = Sample part number | | | | Notes: PSA reduces temperature to 177° C (350° F) and adds 0.002" (0.05 mm) to thickness for all models except S665, S667, and S100721. #### **▼**= STANDARD OPTIONS Specifications subject to change #### **Embedded lead wires** Models S239558, S239559, S239560, and S239561 feature all leadwires embedded directly into the body of the sensor. Laminating the leadwires into the sensor body creates an even more robust connection that can withstand mechanical stress, vibration, and harsh environmental conditions. Common lead connection outside body Leadwires embedded directly into the body #### **Waterproof model** Model S667 is waterproof and suitable for continuous immersion. Use it to monitor the temperature of water in a tank or container, or on equipment that must withstand wash-down or immersion. Check with Minco for suitability in other liquids. STOCKED PARTS AVAILABLE ### Thermal Ribbon™ Sensors Thermal ribbon sensing elements are crucial components utilized in various industrial and commercial applications for temperature monitoring and control. These sensing elements are designed with high precision and sensitivity, ensuring accurate measurement of temperature changes. Their thin and flexible construction enables easy integration into different systems and environments, allowing for versatile usage. One of the key features of thermal ribbon sensing elements is their rapid response time, providing real-time data on temperature fluctuations. Additionally, they exhibit excellent durability and reliability, ensuring consistent performance even in harsh operating conditions. Their non-invasive nature makes them ideal for applications where direct contact with the object being measured is impractical or undesirable. Overall, thermal ribbon sensing elements offer enhanced efficiency, cost-effectiveness, and reliability, making them indispensable tools in temperature monitoring and control systems across various industries. #### **Thermal-Ribbon Specifications** | Dimensions
W x L x T _{max} | Element options | Insulation | Temperature range | Leadwires | Time
constant* | Features | Model | |--|----------------------------|---|--------------------------------|--|-------------------|--|-------------------| | 0.20 x 1.50 x 0.030"
(5.1 x 38.1 x 0.8 mm) | ▼FA | Polyimide | -200 to 200°C
-328 to 392°F | AWG 34,
PTFE
insulated | 0.15 sec. | Wire-wound
nickel-iron for
high resistance
in small package | ▼ \$38 | | 0.30 x 0.30 x 0.025"
(7.6 x 7.6 x 0.7 mm) | ▼ PD
PE | Polyimide
with foil
backing | -200 to 200°C
-328 to 392°F | AWG 28,
PTFE
insulated | 0.15 sec. | Wire-wound
element | ▼ S651 | | 0.75 x 0.75 x 0.04"
(19 x 19 x 1.0 mm | ▼FA | Mylar | -200 to 150℃
-328 to 302°F | AWG 30,
PTFE
insulated | 0.3 sec. | Wire-wound
nickel-iron flat
element for high
resistance | ▼ \$25 | | 0.79 x 1.87 x 0.055"
(20 x 47.5 x 1.4 mm)
solder pad version shown | ▼PD
PE | Polyimide
(clear
polyester
available) | -73 to 200°C
-100 to 392°F | (Optional)
AWG
24, PTFE
insulated | 0.10 sec. | Only 0.010" thick
over element, fast
time response,
platinum PD
accuracy available | ▼ S17422 | | 1.00 x 1.25 x 0.090"
(25.4 x 31.8 x 2.3 mm) | ▼ PB11 PB22 ▼ PD12 PE22 | Silicone
rubber with
polyimide
backing | -62 to 220°C
80 to 428°F | AWG 24,
silicone
rubber
insulated | 0.2 sec. | High temperature
rating, platinum
PD accuracy
available | ▼ \$32
▼ \$385 | | 0.50 x 1.25 x 0.050"
(12.7 x 31.8 x 1.3 mm) | ▼PA
▼PE
▼ CA
▼ NA | Polyimide | -73 to 200°C
-100 to 392°F | | 0.17 sec. | Easy motor installations | ▼ S3238 | | 0.50 x 1.25 x 0.050"
(12.7 x 31.8 x 1.3 mm) | ▼PA
▼PE
▼ CA
▼ NA | Polyimide | -73 to 200°C
-100 to 392°F | AWG
26,
PTFE | 0.17 sec. | IECEx and ATEX
(Ex) certified | S217496 | | 0.375 x 4.00 x 0.075"
(9.5 x 101.6 x 1.9 mm) | ▼PD12
PE22 | Silicone
rubber w/ poly-
imide backing | -62 to 220°C
-80 to 428°F | insul-
ated | 0.6 sec. | Platinum PD
accuracy | ▼S34
▼S386 | | 0.375 x 4.00 x 0.065"
(9.5 x 101.6 x 1.7 mm) | ▼FA | Polyimide | -200 to 200°C
-328 to 392°F | | 0.2 sec. | Wire-wound nickel-
iron for high
resistance, thin
element | ▼ S35 | Notes: T_{max} is measured over the lead bulge. ^{*}Time constant is in water at 1 m/sec. ### Thermal Ribbons™ Sensors #### Specifications, continued | Leadwire insulation codes | | |-----------------------------------|---| | S25, S38, S651, S32, S385, S17422 | Leave blank | | S34, S386, S35 | ▼T = PTFE insulated wires
K= Polyimide insulated wires | #### Sensing elements | Sensing element specific | Code | | |--|----------------------------|-------------| | Platinum (0.00391 TCR) | 100 Ω ±0.5% at 0°C | PA | | Platinum (0.00391 TCR) | 100 Ω ±0.11% at 0°C | PB11 | | Platinum (0.00391 TCR) | 100 Ω ±0.22% at 0°C | PB22 | | Platinum (0.00385 TCR)
(EN60751, Class B) | 100 Ω ±0.12% at 0°C | PD, PD12 | | Platinum (0.00385 TCR) | 100 Ω ±0.36% at 0°C | PE (S17422) | | Platinum (0.00385 TCR) | 100 Ω ±0.5% at 0°C | PE (S3238) | | Platinum (0.00385 TCR) | 100 Ω ±0.22% at 0°C | PE22 | | Nickel-iron (0.00518 TCR) | 604 Ω ±0.26% at 0°C | FA | | Copper
427 | 10 Ω ±0.20% at 25°C | CA | | Nickel 672 | 120 Ω ±0.3% at 0°C | NA | ^{**} See table above for element options on each model. #### Custom Thermal-Ribbon designs Minco can custom-wind Thermal-Ribbon elements in virtually any shape and size. We can profile sensing elements to provide increased sensitivity in selected zones, and provide packaging to perfectly fit your applications. Contact Minco Sales and Customer Service today to discuss your application. #### Specification and order options | S32 | Model number from table | |---------|--| | PB22 | Sensing element from table | | Z | Number of leads: ▼ Y = 2 leads ▼ Z = 3 leads X = 4 leads ▼ W = Solder pads (S17422 only) | | Т | Leadwire insulation code from left | | 36 | Lead length in inches ▼: 0, 12, 36, 144 (Specify 0 for solder pads, option on S17422 only) | | А | Adhesive backing: ▼ A = No adhesive ▼ B = Pressure-sensitive adhesive (PSA) | | S32PB22 | 2Z36A = Sample part number | Notes: PSA reduces temperature to 177°C (350°F) and adds 0.002" (0.05 mm) to thickness. #### Model \$3238/\$217496 Model S3238 is specially designed to sense *stator* temperatures in motors and generators. An alternative to the "stick" sensors, the S3238 mounts on the end turns of stator windings and provides an easy way to add overtemperature protection when the stator is not being rewound. Model S217496 is the same as the S3238, but includes certifications for hazardous areas, with both IECEx and ATEX (Ex) approvals. #### S3238 specification and order options | S3238 | Model number S3238 | |----------|--| | PA | Sensing element from table | | Υ | Number of leads:
▼ Y = 2 leads (not available on CA)
▼ Z = 3 leads X = 4 leads | | Т | Lead insulation: ▼ T = PTFE ▼ TS = SS braid over PTFE | | 36 | Lead length in inches:
▼: 36, 240 | | U | Lead configuration:
▼T = Twisted ▼U = Untwisted | | A | Adhesive backing:
▼ A = No adhesive
▼ B = Pressure-sensitive adhesive (PSA) | | S3238PA\ | /T36UA = Sample part number | ### Thermistor Thermal-Tab™ #### Overview Model TS665 and TS667 offer extremely sensitive NTC thermistors for applications with small temperature changes. Model TS667 also features waterproof construction, making it suitable for continuous immersion. #### **Specifications** | Dimensions
W x L x T _{max} | Element options | Insulation | Temp. range | Leadwires | Time constant | Feature | Model | |---|-----------------|---|----------------|-------------------------------|---------------|---|----------------| | 0.20 x 0.47 x 0.079"
(5.0 x 12.0 x 2.0 mm) | | Polyimide with elastomer cover coat | -50 to 125℃ | AWG 26,
PTFE insulated | 0.8 sec. | Small, low-cost | ▼ TS665 | | 0.20 x 0.60 x 0.118"
(5.0 x 15.2 x 3.0 mm) | | Silicone rubber with elastomer cover and foil backing | (-58 to 257°F) | AWG 24,
Silicone insulated | 1.3 sec. | Waterproof, suitable for continuous immersion | ▼TS667 | Notes: T_{max} is measured over the lead bulge. TS665 is suitable for the CT325 temperature controller (page 4-20). *Time constant is in water at 1 m/sec. #### Sensing elements | Sensing element | Code | | |-----------------|--------------------------|-----| | NTC thermistor | 50k Ω ±1% at 25°C | ▼TF | | NTC thermistor | 10k Ω ±1% at 25°C | ▼TK | ^{**} See table above for element options on each model. #### Specification and order options | TS665 | Model number from table | | |-----------------------------------|--|--| | TF | Sensing element from table | | | Υ | Number of leads: Y = 2 leads | | | 40 | Lead length in inches: ▼40" (60" max.) | | | А | Adhesive backing A = no adhesive B = no adhesive | | | С | Compliancy:
C = RoHS compliant | | | TS665TFY40AC = Sample part number | | | Note: PSA adds 0.002" (0.05 mm) to thickness. ## Thermocouple Thermal-Ribbon™ TC40 is a patch-style thermocouple that adheres to all types of surfaces for quick and easy mounting. #### Specifications | Specification | 119 | |--|--| | Dimensions
W x L x T _{max} | 0.75 x 0.75 x 0.065"
(19.1 x 19.1 x 1.7 mm) | | | | | Junction type | E, J, K, or T | | Insulation | Polyimide | | Temp. range | -200 to 200°C (-328 to 392°F) | | Leadwires | AWG 24, solid PTFE insulated | | Time constant | 0.6 sec. | | Features | Surface mounting | | Model | TC40 | Notes: T_{max} is measured over the lead bulge. *Time constant is in water at 1 m/sec. TC40 Junction type: E, ▼J, ▼K, or ▼T Covering over leadwires: ▼T = PTFE only S = Stainless steel braid 40 Lead length in inches: **▼**: 40, 240 Adhesive backing: A = No adhesive B = Pressure-sensitive adhesive (PSA)TC40JT36A = Sample part number Note: PSA reduces temperature to 177°C (350°F) and adds 0.002" (0.05 mm) to thickness. Specification and order options Model number ### Thermal Ribbon Installation and Accessories Thermal-Ribbons lend themselves to a variety of installation methods. You should avoid repeated bending during the installation process, and Thermal-Ribbons should not flex in use unless they are specifically designed to do so. Take care to secure leadwires so they do not pull against sensor bodies. Leadwires should be routed along the sensed surface a short distance so that they do not sink heat away from the sensing element. Listed below are some standard installation methods. #### Pressure sensitive adhesive PSA (option B in part number) is the simplest mounting method, but it is restricted to flat surfaces and temperatures below 177°C (350°F). PSA is usually factory applied to the mounting surface of the Thermal-Ribbon. To install, just remove the backing paper and press in place. #### #20 stretch tape High temperature silicone rubber tape for mounting Thermal-Ribbons to pipes or other cylinders as shown above. It comes in 1" wide rolls, 6 or 36 feet long. #### Thermal Ribbons for pipe sensing Thermal Ribbons make a practical, economical alternative to traditional immersed sensors for sensing fluid temperatures in pipes or tanks. They mount directly on pipe surfaces, so there is no need to tap and drain systems to install thermowells. If the Thermal-Ribbon is installed correctly, tests show that the thermal response is as quick and accurate as traditional invasive sensors. See page 8-4 for Thermal-Ribbons specially designed for pipe sensing. #### #6 RTV cement Room temperature vulcanizing cement for mounting silicone rubber Thermal-Ribbons to flat or curved surfaces. It is available in 3 oz. (89 ml) tubes. Contact Minco for other adhesives usable with Kapton™ or Mylar™ Thermal-Ribbons. #### **Shrink bands** Minco shrink bands are pre-stretched plastic strips with adhesive at both ends. Use them to mount Thermal-Ribbons to cylinders. Simply wrap the band around the sensor and cylinder, secure the ends, and heat to shrink in place. To order, specify band width and cylinder diameter. #### #21 Polyimide tape High temperature tape with silicone-based adhesive. Useful for quick mounting of Thermal-Ribbon or Thermal-Tab sensors to flat surfaces. Makes a strong but removable bond to most smooth and clean surfaces. Maximum operating temperature is 150°C. 0.5 inch wide x 108 ft. long roll. Minco manufactures flexible Thermofoil™ etched-foil heaters for precision temperature control of critical applications. We can integrate heaters with Thermal-Ribbons and other sensors and controllers to provide complete turnkey thermal solutions. Learn more about Thermofoil heater solutions at www.minco.com ## ► SECTION 9: ELEMENTS - Accurate sensing from -200 to 600°C (-328 to 1112°F) - Wide choice of sizes and styles for application versatility - Low cost thin-film elements - Wire wound elements #### **Section 9: Elements** | Wire-wound elements | 9-2 | |---------------------|-----| | Thin film elements | 9-2 | | Installation | 9-3 | | Extension leads | 9-3 | ### Wire Wound & Thin Film Elements #### **Overview: Wire-wound Elements** Use these elements for general purpose sensing in probes or equipment. PD models meet EN60751, Class B. #### **Specifications** **Temperature range:** See table below. Some elements may be used down to -269°C in certain applications. Contact factory for advice on cryogenic use. Element Body: Glass-coated ceramic Resistance Tolerance: \pm 0.1% at 0°C Lead Length Tolerance: \pm 0.4" (10.2mm) TCR: 0.00385! /! /°C Element Diameter tolerance: ±0.005" (0.13 mm) Element Length tolerance: ±0.06 (1.5 mm) Repeatability: ±0.1°C or better **Stability:** Drift less than 0.1°C/year (normal use) **Vibration:** Withstands 20 G's minimum at 10 to 2,000 Hz. **Shock:** Withstands 100G's minimum sine wave shock of 8 milliseconds duration #### **Overview: Thin-film Elements** Thin film elements offer low cost and resistances to 10k!. #### **Specifications** **Tolerance:** $\pm 0.12\%$ (EN60751 Class B) To order optional $\pm 0.06\%$ tolerance (EN60751 Class A), change 12 to 06 for $\pm 0.06\%$ (EN60751 Class A). Not available with S101162PD, S101163PF, or S19827PS. Material: Aluminum oxide substrate with fused glass cover. #### Dimensional tolerance: 400, 600°C elements: ± 0.02 " (0.5 mm). SMT models: Length x Width ± 0.008 (0.2 mm), Thickness ±0.004 (0.1 mm). TCR: 0.00385! /! /°C. Repeatability: ±0.1°C or better. Stability: Drift less than 0.1°C/year in normal use. Vibration: Withstands 20 G's minimum at 10 to 2,000 Hz. Shock: Withstands 100 G's minimum sine wave shock of 8 milliseconds duration. #### Order options: order part number from table. | Dimensions in inches (mm) | | R (0°C) | Temp. range | Leads | Model | |---------------------------
--|---------|--|---|--------------| | 550°C wire-wou | und elements | | | | | | 0.040 ø
(1.020) | 0.45 (11.4) 1.0 (25) | | -20 to 550°C
(-4 to 1022°F) | 0.006" (0.15 mm) ø
Platinum | ▼ S200PD | | 0.058 ø
(1.47) | 0.40 (10.2) 1.0 (25) | | -100 to 550°C
(-148 to 1022°F) | 0.010" (0.25 mm) ø
Platinum clad palladium | ▼ S201PD | | 0.077 ø
(1.96) | 0.30 (7.6) 1.0 (25) | 100 ! | | | ▼ S202PD | | 0.100 ø
(2.54) | 0.40 (10.2) 1.0 (25) | | | 0.014" (0.35 mm) ø
Platinum clad palladium | ▼ S203PD | | 0.135 ø
(3.43) | 0.40 (10.2) 1.0 (25) | | | 0.014" (0.35 mm) ø
Platinum clad palladium | S204PD | | 0.077 ø
(1.96) | 1.00 (25.4) 1.0 (25) | - 500 ! | | 0.010" (0.25 mm) ø
Platinum clad palladium | ▼ S212PG | | 0.135 ø (3.43) | 1.20 (30.5) 1.0 (25) | | | 0.014" (0.35 mm) ø
Platinum clad palladium | ▼ S214PG | | 400°C and 600° | C thin-film elements | _ | | | | | 0.063 (1.6) | 0.016 (41) THICK
0.126 (3.2) | 100 ! | -50 to 150°C
(-58 to 302°F) SMT
(surface mount | Solder contacts:
Tin plated, | ▼ \$101162PD | | | | 1000 ! | technology) | 0.020" (.51 mm) | ▼S101163PF | | 0.05 (1.3) | 0.025 (0.7) THICK
0.07 (1.7) Lead length: 0.4 (10) | 100 ! | -50 to 400°C | 0.010" (0.25 mm) ø Ag
.0004! / mm / lead | ▼S100144PD12 | | | | 1000 ! | | | ▼S101503PF12 | | 0.10 (2.5) | 0.04 (1.1) THICK
.20 (5.0) Lead length: 0.6 (15) | | (-58 to 752°F) | 0.010" (0.25 mm) ø Ag
.0004! / mm / lead | ▼ S19827PS12 | | 0.08 (2.0) | 0.05 (1.3) THICK
0.09 (2.3) Lead length
S245: 0.6 (15)
S249: 0.4 (10) | 100.1 | -70 to 400°C
(-94 to 752°F) | 0.010" (0.25 mm) ø Ag
.0004! / mm / lead | ▼ S245PD12 | | | | 100 ! | -70 to 600°C
(-94 to 1112°F) | 0.008" (0.20 mm) ø Pt/Ni
.003! / mm / lead | ▼ S249PD12 | | 0.08 (2.0) | 0.05 (1.3) THICK
0.20 (5.0) Lead length
\$247: 0.6 (15)
\$251: 0.4 (10) | 1000 ! | -70 to 400°C
(-94 to 752°F) | 0.010" (0.25 mm) ø Ag
.0004! / mm / lead | ▼ S247PF12 | | | | | -70 to 600°C
(-94 to 1112°F) | 0.008" (0.20 mm) ø Pt/Ni
.003! / mm / lead | ▼ S251PF12 | Note: Contact Minco Customer Service for quantities available ## Installation & Accessories ## Installation Ceramic elements can be assembled into probes or potted inside holes in heat sinks and platens. Ceramic cement is recommended for high temperature potting. Epoxy is recommended for intermediate temperatures. Round elements provide the best time response in round sheaths and holes. Flat thin film elements can be bonded to surfaces. Elements are calibrated at the end of their leads. The leads have resistances ranging from 0.6 to 2.4! per foot, so you should connect extension leads as close as possible to the end of the element leads to maintain tolerance. Minco can supply elements with extension leadwires welded onto the sensor leads. Use the standard models below or contact us for a quote on your custom design. One final note: Ceramic elements are fragile and can suffer damage or loss of accuracy from improper installation. In many cases, the best alternative is to buy a complete encased probe assembly from Minco. Take advantage of our expertise and equipment for best overall performance and value. ## #8 high temperature cement #8 comes as a powder in 1 oz. packages. Just add water to form a potting compound rated to 850°C (1562°F). All elements are available with factory-welded extension leads insulated with PTFE, polyimide, or mica/glass. #### Model AC887 **Insulation:** PTFE, FEP tubing over connections **Maximum temperature:** 200°C (392°F). | Lead | Maximum diamet | Maximum diameter over lead bundle in inches (mm) | | | | | | |------|----------------|--|------------|--|--|--|--| | AWG | 2 leads | 3 leads | 4 leads | | | | | | 22 | 0.15 (3.8) | 0.16 (4.0) | 0.18 (4.6) | | | | | | 24 | 0.14 (3.5) | 0.14 (3.5) | 0.17 (4.3) | | | | | | 26 | 0.13 (3.3) | 0.14 (3.5) | 0.14 (3.5) | | | | | | 28 | 0.13 (3.3) | 0.13 (3.3) | 0.13 (3.3) | | | | | | 30 | 0.11 (2.8) | 0.12 (3.0) | 0.12 (3.0) | | | | | #### Model AC888 **Insulation:** Mica/glass, glass braid over connections Maximum temperature: 550°C (1022°F). | Lead | Maximum diameter over lead bundle in inches (mm) | | | | | |------|--|------------|------------|--|--| | AWG | 2 leads 3 leads 4 leads | | | | | | 22 | 0.16 (4.0) | 0.20 (5.1) | 0.20 (5.1) | | | #### Model AC889 **Insulation:** Polyimide, FEP tubing over connections Maximum temperature: 200°C (392°F). | Lead | Maximum diameter over lead bundle in inches (mm) | | | | | |------|--|------------|------------|--|--| | AWG | 2 leads | 3 leads | 4 leads | | | | 22 | 0.14 (3.5) | 0.16 (4.0) | 0.17 (4.3) | | | | 26 | 0.13 (3.3) | 0.15 (3.8) | 0.15 (3.8) | | | | 30 | 0.11 (2.8) | 0.12 (3.0) | 0.12 (3.0) | | | #### Model AC101828 **Insulation:** Glass braid, glass braid over connections **Maximum temperature:** 550°C (1022°F). | Lead | Maximum diameter over lead bundle in inches (mm) | | | | | |-------|--|------------|------------|--|--| | AWG | 2 leads 4 leads | | | | | | 27 | 0.10 (2.5) | 0.12 (3.0) | 0.13 (3.3) | | | | solid | | | | | | | leads | | | | | | ## Extension lead specification and order options | AC887 | Model number | | | | |----------|--|--|--|--| | Z | Number of leads: Y = 2 leads Z = 3 leads X = 4 leads | | | | | 26 | Lead gauge (AWG) | | | | | L | | | | | | 48 | Lead length in inches | | | | | AC887Z26 | 6L48 = Sample part number | | | | **▼**= STANDARD OPTIONS Specifications subject to change # ► SECTION 10: TECHNICAL INFORMATION ## **Section 10: Technical Information** | Your product guide | 10-2 | |---|----------------| | Industry applications | 10-3 | | Designed for optimal performance | 10-4 to 10-5 | | Temptran™ temperature transmitters | 10-6 | | RTD, thermocouple, or thermistor | 10-7 | | Choosing sensor elements | 10-8 | | RTD connections: 2-wire, 3-wire, 4-wire | 10-9 | | Resistance/temperature tables | 10-10 to 10-11 | | Thermocouple voltage/temperature tables | 10-11 | | Temperature coefficient of resistance (TCR) | 10-12 | | SensorCalc program | 10-12 | | Miscellaneous specifications and codes | 10-12 | | Material selection guide | 10-13 | ## Your Sensors & Instruments Product Guide #### **How To Get Started** #### 1. Understand and define your application requirements Many factors should be a part of the sensor system design process. The factors listed below can help you define the sensing requirements for your application. Define the typical and extremes of these environmental conditions: - minimum and maximum temperatures - pressure - · humidity - shock - vibration - · flow rate #### Also ask: - What is the sensed medium (a surface or immersed in solid, liquid or gas)? - Is the medium chemically reactive (corrosive) or hazardous (explosive)? - Is there high electromagnetic interference potential from power switching, rectification, or radio waves? Finally, define the significance of these performance specifications in your application? - sensing accuracy at a calibration point and/or over a temperature span - repeatability - stability - · sensor time constant - insulation resistance ## 2. Determine which sensing technology options meet your requirements Several potential sensing technologies may meet the essential environmental and performance specifications of your application. This section of the *Sensors and Instruments Product Guide* will provide you with a basic understanding of Minco's sensing and instrumentation technology. For more information go to www.minco.com. ## 3. Compare sensor construction alternatives for best fit and ease of use While a sensing technology may appear to be capable of meeting the requirements of your application, the actual sensor packaging and construction must be evaluated in order to select the optimal cost/performance balance from the available technology options. Regardless of which sensing technology you consider, the packaging of the sensor introduces some level of specification compromise in terms of cost, performance or durability. Use this guide to compare Minco's various sensor constructions and instrumentation solutions to find the best fit for your application. #### 4. Obtain parts for testing as prototypes in your application Minco has a wide selection of standard sensor components that can often be used for prototype testing and production systems. We would appreciate the opportunity to discuss your application with you. We can help ensure that the right sensor construction is selected for your application as well as any accessory components. Often times, we are able to offer recommendations for customization to improve performance and/or lower installed cost. Order sensors and instruments easily online with our Sensors Configurator at www.minco.com or contact Minco Sales and Customer Service today to talk to an engineer about your application. ## Many Industry Applications ## **Process Control and Building Automation** Minco temperature and humidity sensors and instruments are used in process and HVAC/R applications in the most critical environments. Our sensing solutions achieve the lowest total cost of ownership (TCO) while maintaining accuracy, reliability and ease of installation. The Thermal-Vial Temperature Sensing System encompasses a wire-wound RTD element capable of -200°C operation to provide accurate measurement and documentation of freezing, process and storage methodology. ## **Machinery and Motor Protection** Minco RTDs and Thermocouples are used worldwide to safeguard valuable rotating apparatus machinery. Accurate and
fast-responding temperature measurement provides overtemperature protection, and our sensors can be manufactured to integrate with any instrumentation package. Bearing and stator sensors provide accurate sensing in this motor component while Minco's 12-channel temperature monitor (CT224) provides easy and efficient thermal protection. ## **Defense and Aerospace** Minco temperature sensors are used when ruggedness and reliability are key to an applications success. Our sensors can be manufactured to fit in the smallest spaces or across wide expanses. Fast time response and wide temperature capabilities (from -260°C to 650°C) handle nearly any type of harsh or extreme environment. RTDs monitor the temperature of a heated windshield. Flexible Thermal-Ribbons sense wing surface temperatures for wing surface de-icing. Temperature sensors in hydraulic lines monitor fluid temperatures to prevent overheating. ## **Industrial and Commercial Equipment** Minco products are manufactured to provide dependability and repeatability in any application. Our sensors and instruments are used in industrial and commercial equipment to ensure accurate process and quality output. ## Designed for Optimal Performance Minco offers the perfect fit for any temperature and humidity sensing application. From miniature detectors to 100 foot averaging thermometer and heavy duty probe assemblies, our selection lets you choose the best model for your needs. ## Sensing technology options provide flexibility Minco can supply sensors to work with nearly any type of instrument option. - Resistance Temperature Detectors (RTDs) - Platinum RTDs with wide range of TCRs - Range from 0.00375 to 0.003927 - 0.00385 (Minco element "PD") is most popular - · Nickel, copper, and nickel-iron RTD elements - · Non-standard resistance-temperature curves - Base resistances up to thousands of ohms - · Thin film or wire wound constructions - Thermistor temperature sensors - Thermocouple temperature sensors - Integrated Circuit temperature sensors - · High accuracy humidity sensors and transmitters - · Signal conditioning - Linearizing transmitters with 4 to 20 mA, 1 to 5 VDC or other voltage/current outputs, and HART® Protocol - Explosion proof temperature and humidity sensor and transmitter assemblies - Controllers, monitors and alarms for optimal compatibility with sensors #### From simple elements to complex assemblies Minco can configure a sensor style to best fit your application and capabilities: - Basic sensing elements for assembly into your own housing or protective sheath - · Addition of leadwires and terminations to elements - Packaging into protective sheaths, laminates, custom housings, cabling - Bendable case designs or preformed to your specifications - Assembly with fittings, connection heads, thermowells, connectors, feedthroughs - Assembly with signal conditioning electronics, standard or customized - · Certified measurement and test in our metrology lab - · Certified designs for hazardous locations ### **Machining and materials** A sensor's construction has a large impact on its thermal time response and resistance to corrosive media. Minco has an advanced machine shop with CAD/CAM capability for economic production of cases and fittings. We have extensive machining capabilities in a variety of materials: - Stainless steel in various grades - Brass Copper Monel Hastelloy - Titanium - · Rubber, PTFE, plastics We can plate with nickel, gold, and other metals. Additional services include electro-polishing, passivating, and pressure testing. #### Leadwires Sensors may be furnished with many different types of leadwire and cables to meet application parameters: - PTFE, silicone rubber, polyimide, Tefzel, PVC, mica/glass, and glass braid insulation over silver or nickel plated copper wire are common selections or specify your own leadwire or cable requirements - · Stainless steel overbraid or flexible armor - Flat ribbon leads or sensor/flex circuit hybrids #### Lamination Minco's winding and lamination technology enables manufacture of flat, flexible sensors in any size or shape. The custom Thermal-Ribbon™ below has a wire element to average temperatures over its entire area. ### **Testing** Minco has complete in-house testing and metrology equipment to meet stringent quality requirements: - · NIST traceable calibrations - · Hydrostatic testing of thermowells - · Helium leak testing - Automated resistance measurement - Humidity testing ### **Designing for accuracy** How accurate is a temperature sensor? To many, the answer to this question is the sensor's interchangeability specification. For example, 100! platinum RTDs are typically interchangeable within 0.1! (0.3°C) at 0°C . But interchangeability only tells how closely the electrical characteristics of a sensor conform to its published tables. What you really want to know is how much the temperature seen at your readout or controller deviates from the actual temperature of the material you are sensing. Interchangeability is only one of the potential sources of error in the system, and it is usually not the largest. Following are some other error modes along with suggested solutions. **Repeatability/stability:** Repeatability tells how well the sensor repeats subsequent readings at the same temperature. Stability is the absence of long term drift. In many cases, the user is less concerned with absolute accuracy than with the ability of a sensor to maintain a process at the same point once properly set. **Solution:** Platinum RTDs are the most stable sensor in common use and are used to interpolate over the standard temperature scale from -260 to 962°C. Ordinary industrial models will drift less than 0.1°C per year in normal use. **Time lag:** When temperatures change rapidly, sensors may not keep up. **Solution:** Minco specializes in fast response RTDs. Most models in this guide have a time constant of 2 seconds or less. Certain custom-designed models are faster yet. Time constant is defined as the time it takes a sensor to reflect 63% of a step temperature change: **Conduction errors:** Heat conducted into sensors from ambient air alters the temperature of the sensing tip. **Solution:** Use smaller sensors or tip-sensitive probes, and be sure they are sufficiently immersed or embedded in the sensed medium. **Point sensing errors:** In places where temperatures are stratified or gradients are large, the temperature at a single point may be unrepresentative or misleading. **Solution:** Use temperature averaging probes or Thermal-Ribbons. **Leadwire resistance:** Resistance in the leads between RTDs and control points elevates apparent readings. ### **Solutions:** - Specify sensors with higher resistances. - Use 3 or 4-wire compensating circuits (see page 11-9). - Eliminate leadwire effects with a 4 to 20 mA transmitter. **Self-heating:** The measuring current through an RTD can raise its temperature above the true value. **Solution:** As a general rule, limit current to 5 mA for industrial applications. Most Minco RTDs, and especially Thermal-Ribbons, have a large surface area to dissipate heat and reduce self-heating effects. ### **Custom designs** If you have special requirements - or an OEM design - Minco can typically manufacture a custom sensor solution to improve accuracy and reduce cost at the same time. Contact Minco Sales and Customer Service today to discuss your application. ## Temptran[™] Transmitter Solutions ## Why use Temptrans? ### Long distance accuracy Temptran transmitters amplify the low-level signals from RTDs or thermocouples to an industry-standard 4 to 20 mA current signal proportional to temperature or HART® Protocol/output. Unlike resistance or voltage, current signals are immune to resistance in extension wires and stray electrical noise. This lets you receive accurate signals from a sensor located thousands of feet away. The 4 to 20 mA or HART® output signal and DC power share the same wire pair. You don't need to run power wires to every sensor location. In fact, using HART® transmitters configured in multidrop mode, up to 15 transmitters can be connected in parallel on the same pair of wires. RTD transmitters also linearize the signal to temperature, making them excellent low cost signal conditioners. Their signal increases from 4mA at the lowest temperature to 20mA at the highest temperatures. ### **Engineered for reliability** Over 500,000 Minco transmitters are currently giving troublefree service in installations around the world. Two factors behind Temptran's exceptional stability and longevity are: - Minco encapsulates all electronics in epoxy to exclude contaminants and protect components. - Standard fixed-range transmitters feature ±5% adjustability using 20 turn trimpots. Because a complete rotation of the trimpot represents only 0.25% of the adjustment range, slight movements from mechanical shock cause only negligible output change. In contrast, many competitive transmitters have wide ranging zero and span. With zero and span far more sensitive to potentiometer shifts, a minor bump can void the transmitter's calibration. See Section 4 for complete details and ordering information. ## Easy to install Compact Temptrans fit nearly anywhere. You can install most models in standard electrical utility boxes and elbows. Or Minco offers a complete selection of complementary connection heads in Section 3. ### **Intrinsic safety** Most Temptrans are rated intrinsically safe by Factory Mutual (FM), a recognized testing authority for safety in hazardous areas. Division 1 installations must include a suitable barrier. Go to www.minco.com for a list of barriers FM approved under the system concept for use with Temptrans. ## Special high-accuracy calibration Standard transmitters can be calibrated to the nominal resistance values of the RTD at the zero and span points. Total system error includes the tolerance of both the transmitter and
the RTD sensor. If you order Minco Temptrans match calibrated to the actual resistance of the RTD (traceable to NIST), this effectively eliminates the sensor tolerance from the system accuracy specifications. Temptrans match calibrated to a sensor are always ordered as assemblies. Common examples are shown in Section 1. For example, consider a transmitter with a range of 0 to 500°C. The transmitter itself is accurate to $\pm 1.0^{\circ}\text{C}$ ($\pm 0.2\%$ of span, including calibration accuracy and linearity). The RTD interchangeability contributes an additional error of $\pm 0.3^{\circ}\text{C}$ at 0°C and $\pm 2.8^{\circ}\text{C}$ at 500°C. Total system error would be $\pm 1.3^{\circ}\text{C}$ at 0°C and $\pm 3.8^{\circ}\text{C}$ at 500°C. Calibration of the sensor and transmitter as a set cancels the sensor error, reducing system error to $\pm 1.0^{\circ}\text{C}$ over the full range — all for a nominal extra cost. Get more information on page 4-22. ## RTD, Thermocouple, or Thermistor? ### Resistance temperature detectors (RTDs) An RTD sensing element consists of a wire coil or deposited film of pure metal. The element's resistance increases with temperature in a known and repeatable manner. RTDs exhibit excellent accuracy over a wide temperature range and represent the fastest growing segment among industrial temperature sensors. Their advantages include: - **Temperature range:** Minco models cover temperatures from -260 to 650°C (-436 to 1202°F). - Repeatability and stability: The platinum resistance thermometer is the primary interpolation instrument used by the National Institute of Standards and Technology from -260 to 962°C. Ordinary industrial RTDs typically drift less than 0.1°C/year. - **Sensitivity:** The voltage drop across an RTD provides a much larger output than a thermocouple. - Linearity: Platinum and copper RTDs produce a more linear response than thermocouples or thermistors. RTD non-linearities can be corrected through proper design of resistive bridge networks. - Low system cost: RTDs use ordinary copper extension leads and require no cold junction compensation. - Standardization: Manufacturers offer RTDs to industry standard curves, most commonly 100! platinum to EN60751 (Minco element code PD or PM). #### **Thermocouples** A thermocouple consists of two wires of dissimilar metals welded together into a junction. At the other end of the signal wires, usually as part of the input instrument, is another junction called the reference junction, which is electronically compensated for its ambient temperature. Heating the sensing junction generates a thermoelectric potential (emf) proportional to the temperature difference between the two junctions. This millivolt-level emf, when compensated for the known temperature of the reference junction, indicates the temperature at the sensing tip. Thermocouples are simple and familiar. Designing them into systems, however, is complicated by the need for special extension wires and reference junction compensation. Thermocouple advantages include: • Extremely high temperature capability: Thermocouples with precious metal junctions may be rated as high as 1800°C (3272°F). - **Ruggedness:** The inherent simplicity of thermocouples makes them resistant to shock and vibration. - Small size/fast response: A fine-wire thermocouple junction takes up little space and has low mass, making it suitable for point sensing and fast response. Note, however, that many Minco RTDs have time constants faster than equivalent thermocouples. #### **Thermistors** A thermistor is a resistive device composed of metal oxides formed into a bead and encapsulated in epoxy or glass. A typical thermistor shows a large negative temperature coefficient. Resistance drops dramatically and non-linearly with temperature. Sensitivity is many times that of RTDs but useful temperature range is limited. Some manufacturers offer thermistors with positive coefficients. Linearized models are also available. There are wide variations of performance and price between thermistors from different sources. Typical benefits are: - Low sensor cost: Basic thermistors are quite inexpensive. However, models with tighter interchangeability or extended temperature ranges often cost more than RTDs. - High sensitivity: A thermistor may change resistance by tens of ohms per degree temperature change, versus a fraction of an ohm for RTDs. - **Point sensing:** A thermistor bead can be made the size of a pin head for small area sensing. | | RTD | Thermocouple | Thermistor | | |--|-----------------------------------|------------------------------------|---|--| | Temp. | -260 to 850°C
(-436 to 1562°F) | -270 to 1800°C
(-454 to 3272°F) | -80 to 150°C
(-112 to 302°F)
(typical) | | | Sensor cost | Moderate | Low | Low | | | System cost Moderate | | High | Moderate | | | Stability Best | | Low | Moderate | | | Sensitivity Moderate | | Low | Best | | | Linearity | Best | Moderate | Poor | | | • General purpose sensing • Highest accuracy • Temperature averaging | | Highest
temperatures | Best sensitivityNarrow ranges
(e.g. medical)Point sensing | | ## **Choosing Sensor Elements** ## **RTD element types** Platinum is the most widely specified RTD element type due to its wide temperature range, stability, and standardization between manufacturers. Copper, nickel, and nickel-iron can offer comparable accuracy at lower cost in many applications. | Element
material | Temperature range | Benefits | Typical base resistance | Sensitivity
(Avg. ! /°C, 0 to
100°C) | TCR! /! /°C | |---------------------|-----------------------------------|--|---|--|------------------------| | Platinum | -260 to 650°C
(-436 to 1202°F) | Greatest range Best stability Good linearity | 100! at 0°C
1000! at 0°C | 0.39
3.90 | 0.00375 to
0.003927 | | Copper | -100 to 260°C
(-148 to 500°F) | Best linearity | 10! at 25°C | 0.04 | 0.00427 | | Nickel | -100 to 260°C
(-148 to 500°F) | Low cost High sensitivity | 100! at 0°C
120! at 0°C | 0.62
0.81 | 0.00618
0.00672 | | Nickel-iron | -100 to 204°C
(-148 to 400°F) | Low cost Highest sensitivity | 604! at 0°C
1000! at 70°F
2000! at 70°F | 3.13
4.79
9.58 | 0.00518 to
0.00527 | ## RTD and thermistor interchangeability The tables below show temperature tolerance — the allowable deviation from nominal curves — for RTDs and thermistors in this guide. Minco can supply sensors with tighter overall tolerance, or with the narrowest tolerance at a point other than 0° C. | Temperature | Interchangeabi | Interchangeability | | | | | | | |-------------|----------------|--------------------|--------------|--------------|-------------|--------------|---------------|--| | °C | Platinum RTD | atinum RTD | | | | | | | | | 0.06% at 0°C | 0.1% at 0°C | 0.22% at 0°C | 0.36% at 0°C | 0.5% at 0°C | 0.1% at 70°F | 0.24% at 70°F | | | | (Class A) | (Class B) | | | | | | | | -200 | ±0.55°C | ±1.3°C | | | ±2.1℃ | | | | | -100 | ±0.35°C | ±0.8°C | ±1.3℃ | | ±1.7°C | | | | | 0 | ±0.15°C | ±0.3°C | ±0.5°C | ±0.9°C | ±1.3℃ | ±0.3°C | ±0.7°C | | | 20 | ±0.19°C | ±0.4°C | ±0.7°C | ±1.3°C | ±1.6°C | ±0.3°C | ±0.6°C | | | 100 | ±0.35°C | ±0.8°C | ±1.8°C | ±2.3℃ | ±2.9°C | ±0.7°C | ±1.1°C | | | 200 | ±0.55°C | ±1.3°C | ±3.1℃ | ±3.7°C | ±4.4°C | ±1.3℃ | ±1.8°C | | | 260 | ±0.67°C | ±1.6°C | ±3.7°C | ±4.6°C | ±5.5℃ | | | | | 300 | ±0.75°C | ±1.8°C | | | | | | | | 400 | ±0.95°C | ±2.3°C | | | | | | | | 500 | ±1.15°C | ±2.8°C | | | | | | | | 600 | ±1.35°C | ±3.3°C | | | | | | | | 700 | | ±3.8°C | | | | | | | | 800 | | ±4.3°C | | | | | | | | 850 | | ±4.6°C | | | | | | | | Temperatu | Interchan | geability | | | | | | | | | |-----------|-----------|-----------|------------|--------|-------------|--------|---------|---------|---------|------------| | °C | Copper R1 | ΓD | Nickel RTD |) | Nickel-iror | RTD | | | | Thermistor | | C | ±0.2% | ±0.5% | ±0.3% | ±0.5% | ±0.26% | ±0.5% | ±0.5% | ±0.12% | ±0.25% | ±0.1% | | | at 25°C | at 25°C | at 25°C | at 0°C | at 0°C | at 0°C | at 25°C | at 70°F | at 70°F | at 0°C | | -100 | ±1.5°C | ±2.2°C | | | | ±2.5°C | ±2.9°C | | | | | 0 | ±0.7°C | ±1.5°C | ±0.5°C | ±0.8°C | ±0.6°C | ±1.1°C | ±1.4°C | ±0.5°C | ±1.4°C | ±0.2°C | | 20 | ±0.5°C | ±1.3°C | ±0.8°C | ±1.2°C | ±0.8°C | ±1.4°C | ±1.2°C | ±0.3°C | ±0.7°C | ±0.2°C | | 100 | ±1.5°C | ±2.5°C | ±1.8°C | ±2.2°C | ±1.7°C | ±2.4°C | ±2.2°C | ±1.1°C | ±2.0°C | ±0.3°C | | 150 | ±2.2°C | ±3.3℃ | ±2.5°C | ±3.0°C | ±2.3°C | ±3.1°C | ±2.9℃ | ±1.6°C | ±2.9°C | ±1.0°C | | 200 | ±2.8°C | ±4.1°C | ±3.1°C | ±3.7°C | ±2.9°C | ±3.8°C | ±3.6°C | ±2.1°C | ±3.8°C | | | 260 | ±3.6°C | ±5.1℃ | ±3.4°C | ±4.0°C | | | | | | | ## Thermocouple limits of error per NBS (NIST) Monograph 175, based on ITS-90 | Junction type: | E (Chromel-Constantan) | J (Iron-Constantan) | K (Chromel-Alumel) | T (Copper-Constantan) | |------------------|-------------------------------|--------------------------------|--------------------|--------------------------------| | Limits of error: | ±1.7°C or ±0.5%
0 to 900°C | ±2.2°C or ±0.75%
0 to 750°C | | ±1.0°C or ±0.75%
0 to 350°C | # RTD Connections: 2 wire, 3Wire, 4Wire? Because an RTD is a resistance type sensor, resistance introduced by connecting copper extension wires between the RTD and control instrument will add to readings. Furthermore, this additional resistance is not constant but increases with ambient temperature. To estimate leadwire error in 2-wire circuits, multiply the total length of the extension leads times the resistance per foot in the table below. Then divide by the sensitivity of the RTD, given in the next two
pages, to obtain an error figure in °C. For example, assume you have connected 100 feet of AWG 22 wires to a 100! platinum RTD (PD element). Lead resistance is: $R = (200 \text{ ft.}) \times (0.0165 \text{ ! } / \text{ft.}) = 3.3 \text{ !}$ Approximate error is: $$E = \frac{3.3 \Omega}{0.385 \Omega / ^{\circ}C} = 8.6 ^{\circ}C$$ | Copper Leadwire AWG | Ohms/ft. at 25°C | |---------------------|------------------| | 12 | 0.0016 | | 14 | 0.0026 | | 16 | 0.0041 | | 18 | 0.0065 | | 20 | 0.0103 | | 22 | 0.0165 | | 24 | 0.0262 | | 26 | 0.0418 | | 28 | 0.0666 | | 30 | 0.1058 | You can reduce leadwire error by: - Using larger gauge extension wires. - Specifying an RTD with greater sensitivity; 1000! instead of 100!, for example. - Employing a 3 or 4-wire resistance canceling circuit as shown at right. Common leads, connected to the same end of the sensing element, are the same color. - Using a 2-wire current transmitter. Its linearized signal is immune to electrical noise as well as resistance and can maintain accuracy over runs of several thousand feet. See Section 4 for more information on temperature transmitters. ### 2-wire circuit Shown above is a 2-wire RTD connected to a typical Wheat-stone bridge circuit. E_s is the supply voltage; E_0 is the output voltage; R_1 , R_2 , and R_3 are fixed resistors; and R_T is the RTD. In this uncompensated circuit, lead resistances L_1 and L_2 add directly to R_T . ### 3-wire circuit In this circuit there are three leads coming from the RTD instead of two. L_1 and L_3 carry the measuring current while L_2 acts only as a potential lead. No current flows through it while the bridge is in balance. Since L_1 and L_3 are in separate arms of the bridge, resistance is canceled. This circuit assumes high impedance at E_0 and close matching of resistance between wires L_1 and L_3 . Minco matches RTD leads within 5%. ### 4-wire circuit 4-wire RTD circuits not only cancel leadwires but remove the effects of mismatched resistances such as contact points. A common version is the constant current circuit shown above. I_{s} drives a precise measuring current through L_{1} and $L_{4},\,L_{2}$ and L_{3} measure the voltage drop across the RTD element. E_{o} must have high impedance to prevent current flow in the potential leads. 4-wire circuits may be usable over longer distances than 3-wire, but you should consider using a transmitter in electrically noisy environments. If necessary you can connect a 2-wire RTD to a 3-wire circuit or 4-wire circuit, as shown to the right. As long as the junctions are near the RTD, as in a connection head, errors are negligible. # Resistance/Temperature Tables | Platinum elements | | | | | | | | | | | | | |----------------------------|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | Element code | PJ | PA | РВ | PD, PE* | PN | PL | PH | PP | PG | PF | PW | PS | | Resistance at 0°C | 25.5 ! | 100 ! | 100 ! | 100 ! | 200 ! | 470 ! | 500 ! | 500 ! | 500 ! | 1000 ! | 1000 ! | 10k ! | | TCR (! /! /°C) | 0.00392 | 0.00392 | 0.00391 | 0.00385 | 0.00385 | 0.00392 | 0.00392 | 0.00391 | 0.00385 | 0.00385 | 0.00375 | 0.00385 | | Sensitivity (Average! /°C) | 0.1 | 0.392 | 0.391 | 0.385 | 0.77 | 1.845 | 1.963 | 1.955 | 1.925 | 3.85 | 3.75 | 38.5 | | Temperature (°C) | Resistance | | 0.551 | 0.505 | 0177 | 110 13 | 11703 | 11755 | 111723 | 5.05 | 3173 | 30.3 | | -200 | 4.33 | 17.00 | 17.26 | 18.52 | 37.04 | 79.88 | 84.98 | 86.30 | 92.60 | 185.20 | | 1,852 | | -180 | 6.56 | 25.72 | 25.97 | 27.10 | 54.19 | 120.88 | 128.59 | 129.84 | 135.48 | 270.96 | | 2,710 | | -160 | 8.75 | 34.31 | 34.54 | 35.54 | 71.09 | 161.28 | 171.57 | 172.72 | 177.72 | 355.43 | | 3,554 | | -140 | 10.91 | 42.80 | 43.01 | 43.88 | 87.75 | 201.15 | 213.99 | 215.03 | 219.38 | 438.76 | | 4,388 | | -120 | 13.05 | 51.19 | 51.37 | 52.11 | 104.22 | 240.57 | 255.93 | 256.83 | 260.55 | 521.10 | | 5,211 | | -100 | 15.17 | 59.49 | 59.64 | 60.26 | 120.51 | 279.58 | 297.43 | 298.19 | 301.28 | 602.56 | | 6,026 | | -80 | 17.27 | 67.71 | 67.83 | 68.33 | 136.65 | 318.23 | 338.55 | 339.17 | 341.63 | 683.25 | | 6,833 | | -60 | 19.35 | 75.87 | 75.96 | 76.33 | 152.66 | 356.57 | 379.53 | 379.80 | 381.64 | 763.28 | | 7,633 | | -40 | 21.41 | 83.96 | 84.03 | 84.27 | 168.54 | 394.63 | 419.82 | 420.13 | 421.35 | 842.71 | 846.57 | 8,427 | | -20 | 23.46 | 92.01 | 92.04 | 92.16 | 184.32 | 432.43 | 460.03 | 460.19 | 460.80 | 921.60 | 923.55 | 9,216 | | 0 | 25.50 | 100.00 | 100.00 | 100.00 | 200.00 | 470.00 | 500.00 | 500.00 | 500.00 | 1000.00 | 1000.00 | 10,000 | | 20 | 27.53 | 107.95 | 107.92 | 107.79 | 215.59 | 507.35 | 539.73 | 539.58 | 538.96 | 1077.94 | 1075.96 | 10,779 | | 40 | 29.54 | 115.85 | 115.78 | 115.54 | 231.08 | 544.47 | 579.23 | 578.92 | 577.70 | 1155.41 | 1151.44 | 11,554 | | 60 | 31.54 | 123.70 | 123.60 | 123.24 | 246.48 | 581.38 | 618.49 | 618.02 | 616.21 | 1232.42 | 1226.44 | 12,324 | | 80 | 33.53 | 131.50 | 131.38 | 130.90 | 261.79 | 618.06 | 657.51 | 656.90 | 654.48 | 1308.97 | 1300.96 | 13,090 | | 100 | 35.51 | 139.26 | 139.11 | 138.51 | 277.01 | 654.53 | 696.31 | 695.54 | 692.53 | 1385.06 | 1375.00 | 13,851 | | 120 | 37.48 | 146.97 | 146.79 | 146.07 | 292.14 | 690.77 | 734.86 | 733.94 | 730.34 | 1460.68 | 1448.56 | 14,607 | | 140 | 39.43 | 154.64 | 154.42 | 153.58 | 307.17 | 726.79 | 773.18 | 772.11 | 767.92 | 1535.84 | 1521.63 | 15,358 | | 160 | 41.37 | 162.25 | 162.01 | 161.05 | 322.11 | 762.59 | 811.27 | 810.05 | 805.27 | 1610.54 | 1594.22 | 16,105 | | 180 | 43.31 | 169.82 | 169.55 | 168.48 | 336.96 | 798.18 | 849.12 | 847.75 | 842.39 | 1684.78 | 1666.33 | 16,848 | | 200 | 45.22 | 177.35 | 177.04 | 175.86 | 351.71 | 833.54 | 886.74 | 885.22 | 879.28 | 1758.56 | 1737.96 | 17,586 | | 220 | 47.13 | 184.82 | 184.49 | 183.19 | 366.38 | 868.68 | 924.12 | 922.46 | 915.94 | 1831.88 | 1809.11 | 18,319 | | 240 | 49.02 | 192.25 | 191.89 | 190.47 | 380.95 | 903.59 | 961.27 | 959.46 | 952.36 | 1904.73 | 1879.78 | 19,047 | | 260 | 50.91 | 199.64 | 199.24 | 197.71 | 395.42 | 938.29 | 998.18 | 996.22 | 988.56 | 1977.12 | 1949.96 | 19,771 | | 280 | 52.78 | 206.97 | 206.55 | 204.91 | 409.81 | 972.77 | 1034.86 | 1032.76 | 1024.52 | 2049.05 | 2019.67 | 20,490 | | 300 | 54.64 | 214.26 | 213.81 | 212.05 | 424.10 | 1007.03 | 1071.31 | 1069.06 | 1060.26 | 2120.52 | 2088.89 | 21,205 | | 320 | 56.48 | 221.50 | 221.02 | 219.15 | 438.30 | 1041.06 | 1107.51 | 1105.12 | 1095.76 | 2191.52 | 2157.63 | 21,915 | | 340 | 58.32 | 228.70 | 228.19 | 226.21 | 452.41 | 1074.88 | 1143.49 | 1140.95 | 1131.03 | 2262.06 | 2225.89 | 22,621 | | 360 | 60.14 | 235.85 | 235.31 | 233.21 | 466.43 | 1108.47 | 1179.23 | 1176.55 | 1166.07 | 2332.14 | 2293.67 | 23,321 | | 380 | 61.95 | 242.95 | 242.38 | 240.18 | 480.35 | 1141.85 | 1214.73 | 1211.91 | 1200.88 | 2401.76 | 2360.96 | 24,018 | | 400 | 63.75 | 250.00 | 249.41 | 247.09 | 494.18 | 1175.00 | 1250.00 | 1247.04 | 1235.46 | 2470.92 | 2427.78 | 24,709 | | 420 | 65.54 | 257.01 | 256.39 | 253.96 | 507.92 | 1207.93 | 1285.03 | 1281.94 | 1269.81 | 2539.62 | 2494.11 | 25,396 | | 440 | 67.31 | 263.97 | 263.32 | 260.79 | 521.57 | 1240.64 | 1319.83 | 1316.60 | 1303.92 | 2607.85 | 2559.96 | 26,078 | | 460 | 69.07 | 270.88 | 270.21 | 267.56 | 535.12 | 1273.14 | 1354.40 | 1351.03 | 1337.81 | 2674.62 | 2625.33 | 26,756 | | 480 | 70.83 | 277.75 | 277.04 | 274.29 | 548.59 | 1305.41 | 1388.73 | 1385.22 | 1371.46 | 2742.93 | 2690.22 | 27,429 | | 500 | 72.56 | 284.57 | 283.84 | 280.98 | 561.96 | 1337.46 | 1422.83 | 1419.18 | 1404.89 | 2808.78 | 2754.63 | 28,098 | | 520 | 74.29 | 291.34 | 290.58 | 287.62 | 575.23 | 1369.28 | 1456.69 | 1452.91 | 1438.08 | 2876.16 | | 28,762 | | 540 | 76.01 | 298.06 | 297.28 | 294.21 | 588.42 | 1400.89 | 1490.31 | 1486.40 | 1471.04 | 2942.08 | | 29,421 | | 560 | 77.71 | 304.74 | 303.93 | 300.75 | 601.51 | 1432.28 | 1523.70 | 1519.66 | 1503.77 | 3007.54 | | 30,075 | | 580 | 79.40 | 311.37 | 310.54 | 307.25 | 614.51 | 1463.45 | 1556.86 | 1552.68 | 1536.27 | 3072.54 | | 30,725 | | 600 | 81.08 | 317.96 | 317.09 | 313.71 | 627.42 | 1494.39 | 1589.78 | 1585.47 | 1568.54 | 3137.08 | | 31,371 | | 620 | 82.75 | 324.49 | 323.60 | 320.12 | 640.23 | 1525.12 | 1622.47 | 1618.02 | 1600.58 | 3201.16 | | | | 640 | 84.40 | 330.98 | 330.07 | 326.48 | | 1555.62 | | 1650.35 | | | | | | 660 | 86.04 | 337.43 | 336.49 | 332.79 | | 1585.91 | 1687.14 | | | | | | | 680 | 87.67 | 343.82 | 342.86 | 339.06 | | 1615.97 | 1719.12 | | | | | | | 700 | 89.29 | 350.17 | 349.18 | 345.28 | | 1645.81 | 1750.87 | 1745.91 | | | | | | 720 | | | | 351.46 | | | | | | | | | | 740 | | | | 357.59 | | | | | | | | | | 760 | | | | 363.67 | | | | | | | | | | 780 | | | | 369.71 | | | | | | | | | | 800 | | | | 375.70 | | | | | | | | | | 820 | | | | 381.65 | | | | | | | | | | 840 | | | | 387.55 | | | | | | | | | | 850 | | | | 390.48 | | | | | | | | | ^{*} PD is the most common platinum sensor element used by industry. PE has a wider manufacturing tolerance than PD. Note: More element options and complete tables in 1° C or 1° F increments are available from Minco at www.minco.com/ ## Resistance/Temperature Tables Most RTD tables follow the modified Callendar-Van Dusen equation: $$R_t = R_0 \left[1 + At + Bt^2 + Ct^3 \right]$$ or some variation thereof, where R_t is the modified resistance at temperature t, R_0 is the ice point resistance, and A, B, and C are coefficients describing a given thermometer. Download Minco's white paper entitled *Resistance Thermometry: Principles and Applications of Resistance Thermometers and Thermistors* at www.minco.com for a complete set of equations and coefficients for numerical calculation of resistance vs temperature. | | Copper | Nickel | Nickel-iron | | | Thermistors | | | | | | |----------------------------|----------------|-----------------|-----------------|-------------------|-------------------|-------------------------|-------------------------
-------------------------|-------------------------|--|--| | Element code | CA | NA | FA | FB | FC | TA | ТВ | TF | TK | | | | Base
resistance | 10 !
at 25℃ | 120 !
at 0°C | 604 !
at 0°C | 1000 !
at 70°F | 2000 !
at 70°F | 2252 !
at 25°C | 10k!
at 25℃ | 50k!
at 25℃ | 10k!
at 25℃ | | | | TCR (! /! /°C) | .00427 | .00672 | .00518 | .00527 | .00527 | $R_{25}/R_{125} = 29.2$ | $R_{25}/R_{125} = 23.5$ | $R_{25}/R_{125} = 31.2$ | $R_{25}/R_{125} = 26.6$ | | | | Sensitivity (Average! /°C) | 0.039 | 0.806 | 3.133 | 4.788 | 9.576 | -72 | -287 | -1523 | -324 | | | | Temperature (°C) | Resistance (oh | nms) | <u>'</u> | | | | | | | | | | -100 | 5.128 | | 372.79 | | | | | | | | | | -80 | 5.923 | 66.60 | 410.73 | | | 1660 K | 3558 K | | | | | | -60 | 6.712 | 79.62 | 452.82 | | | 316.5 K | 845.9 K | | | | | | -40 | 7.490 | 92.76 | 499.06 | | | 75.79 K | 239.8 K | 1380 K | 348.9 K | | | | -20 | 8.263 | 106.15 | 549.46 | 826.90 | 1653.81 | 21.87 K | 78.91 K | 431.8 K | 100.2 K | | | | 0 | 9.035 | 120.00 | 604.00 | 908.40 | 1816.81 | 7355 | 29.49 K | 155.6 K | 33.15 K | | | | 20 | 9.807 | 134.52 | 660.97 | 995.04 | 1990.09 | 2814 | 12.26 K | 62.24 K | 12.52 K | | | | 40 | 10.580 | 149.79 | 720.79 | 1086.49 | 2172.99 | 1200 | 5592 | 26.64 K | 5323 | | | | 60 | 11.352 | 165.90 | 783.45 | 1182.50 | 2365.01 | 560.3 | 2760 | 12.31 K | 2510 | | | | 80 | 12.124 | 182.84 | 848.97 | 1282.83 | 2565.66 | 282.7 | 1458 | 6117 | 1293 | | | | 100 | 12.897 | 200.64 | 917.33 | 1387.21 | 2774.44 | 152.8 | 816.8 | 3256 | 718.5 | | | | 120 | 13.669 | 219.29 | 988.54 | 1495.42 | 2990.84 | 87.7 | 481.8 | 1836 | 425.0 | | | | 140 | 14.442 | 238.85 | 1062.60 | 1607.18 | 3214.37 | 53.0 | 297.2 | | | | | | 160 | 15.217 | 259.30 | 1139.50 | 1722.26 | 3444.54 | | | | | | | | 180 | 15.996 | 280.77 | 1219.26 | 1840.41 | 3680.84 | | | | | | | | 200 | 16.776 | 303.46 | 1301.86 | 1961.38 | 3922.77 | | | | | | | | 220 | 17.555 | 327.53 | | | | | | | | | | | 240 | 18.335 | 353.14 | | | | | | | | | | | 260 | 19.116 | 380.31 | | | | | | | | | | Note: More element options and complete tables in 1°C or 1°F increments are available from Minco at www.minco.com ## Thermocouple Voltage/Temperature Tables | Junction type: | E Chromel-Constantan | J Iron-Constantan | K Chromel-Alumel | T Copper-Constantan | |----------------------|----------------------|-------------------|------------------|---------------------| | | Purple Red | White Red | Yellow Red | Blue Red | | Sensitivity (mV/°C): | 0.063 | 0.053 | 0.041 | 0.043 | | Temperature (°C) | Millivolts | | | | | -200 | -8.824 | -7.890 | -5.891 | -5.603 | | -150 | -7.279 | -6.499 | -4.912 | -4.648 | | -100 | -5.237 | -4.632 | -3.553 | -3.378 | | -50 | -2.787 | -2.431 | -1.889 | -1.819 | | 0 | 0.000 | 0.000 | 0.000 | 0.000 | | 50 | 3.047 | 2.585 | 2.022 | 2.035 | | 100 | 6.317 | 5.268 | 4.095 | 4.277 | | 150 | 9.787 | 8.008 | 6.137 | 6.702 | | 200 | 13.419 | 10.777 | 8.137 | 9.286 | | 250 | 17.178 | 13.553 | 10.151 | 12.011 | | 300 | 21.033 | 16.325 | 12.207 | 14.860 | | 350 | 24.961 | 19.089 | 14.292 | 17.816 | | 400 | 28.943 | 21.846 | 16.395 | 20.869 | | 450 | 32.960 | 24.607 | 18.513 | | | 500 | 36.999 | 27.388 | 20.640 | | | 550 | 41.045 | 30.210 | 22.772 | | Note: Complete tables in 1°C or 1°F increments are available from Minco at www.minco.com ## Temperature Coefficient of Resistance (TCR) TCR differentiates RTDs by their resistance/temperature curves. Sometimes called alpha (α), it is specified in various ways by different manufacturers. In this guide TCR is the RTD's resistance change from 0 to 100°C, divided by the resistance at 0°C, divided by 100°C: $$TCR(\Omega/\Omega/^{\circ}C) = \frac{R_{100^{\circ}C} - R_{0^{\circ}C}}{R_{0^{\circ}C} \times 100^{\circ}C}$$ For example, a platinum thermometer measuring 100 ! at 0°C and 139.11 ! at 100°C has TCR 0.00391 ! /! /°C: $$TCR = \frac{139.11\Omega - 100\Omega}{100\Omega \times 100^{\circ}C}$$ For a copper RTD, 10! at 25°C, TCR is: $$TCR = \frac{12.897 \Omega - 9.035 \Omega}{9.035 \Omega \times 100^{\circ} C} = 0.00427$$ Stated another way, TCR is the average resistance increase per degree of a hypothetical RTD measuring 1! at 0°C. The most common use of TCR is to distinguish between curves for platinum, which is available with TCRs ranging from 0.00375 to 0.003927. The highest TCR indicates the highest purity platinum, and is mandated by ITS-90 for standard platinum thermometers. There are no technical advantages of one TCR versus another in practical industrial applications. 0.00385 platinum is the most popular worldwide standard and is available in both wire-wound and thin-film elements. In most cases, all you need to know about TCR is that it must be properly matched when replacing RTDs or connecting them to instruments. ## SensorCalc Program RTD and thermocouple tables are available online at www.minco.com You can create and store tables in a variety of formats. You can also enter resistances and coefficients for custom tables, using Callendar-Van Dusen or ITS-90 equations. ## Miscellaneous Specifications and Codes #### **Thread specifications** | Thread | Applicable specifications | |----------|---| | G1/2 | ISO 228/1DIN 259BS 2779JIS B0202 | | R¼
R½ | • ISO 7/1
• DIN 2999
• BS 21
• JIS B0203 | #### Wire gauge conversion | Wire Gauge | Cross Secti | Resistance | | |------------|----------------|------------|----------------| | Number AWG | Stranded Solid | | ! /ft. at 25°C | | 30 | 0.057 | 0.051 | 0.1058 | | 28 | 0.089 | 0.080 | 0.0666 | | 26 | 0.141 | 0.128 | 0.0418 | | 24 | 0.227 | 0.205 | 0.0262 | | 22 | 0.355 | 0.324 | 0.0165 | | 20 | 0.563 | 0.519 | 0.0103 | | 18 | 0.897 | 0.823 | 0.0065 | #### **Ingress Protection (IP) Codes** | | First Number
Protection against solid bodies | Second Number
Protection against liquid | |---|---|--| | 0 | No protection | No protection | | 1 | Objects > 50 mm | Vertically dripping water | | 2 | Objects > 12 mm | 75° to 90° dripping water | | 3 | Objects > 2.5 mm | Sprayed water | | 4 | Objects > 1 mm | Splashed water | | 5 | Dust-protected | Water jets | | 6 | Dust-tight | Heavy seas | | 7 | | Effects of immersion | | 8 | | Indefinite immersion | | Approximate US Enclosure Type Equivalent to IPXX | | | | | | | | |--|----|--------|----|----------|----|--|--| | Туре | IP | Туре | IP | Туре | IP | | | | 1 | 10 | 3S | 54 | 6 & 6P | 67 | | | | 2 | 11 | 4 & 4X | 55 | 12 & 12K | 52 | | | | 3 | 54 | 5 | 52 | 13 | 54 | | | | 3R | 14 | | | | | | | ## **Material Selection Guide** This guide lists the least expensive materials compatible with various corrosive media. The user should also consider unusual temperatures or levels of concentration. Contact Minco Sales and Customer Service for assistance. | Medium | °F (°C) | Material | |---|----------------------|-------------| | Acetic acid | 212 (100) | Monel | | Acetic acid Acetic anhydride | 300 (149) | Nickel | | Acetone | 212 (100) | 304 SS | | | | | | Acetylene | 400 (204) | 304 SS | | Alcohols | 212 (100) | 304 SS | | Alum. (Potassium or sodium) | 300 (149) | Hastelloy C | | Aluminum chloride | 212 (100) | Hastelloy B | | Aluminum sulfate | 212 (100) | 316 SS | | Ammonia, dry | 212 (100) | 316 SS | | Ammonium hydroxide | 212 (100) | 316 SS | | Ammonium chloride 50% | 300 (149) | Monel | | Ammonium nitrate | 300 (149) | 304 SS | | Ammonium sulfate | 212 (100) | 316 SS | | Amyl acetate | 300 (149) | 304 SS | | Aniline | 25 (-4) | Monel | | Asphalt | 250 (121) | 304 SS | | Atmosphere (industrial and marine) | | 304 SS | | Barium compounds | See calcium | | | Beer | 70 (21) | 304 SS | | Benzene | 212 (100) | Steel | | Benzoic acid | 212 (100) | 316 SS | | Bleaching powder 15% | 70 (21) | Monel | | Borax | 212 (100) | Brass | | Bordeaux mixture | 200 (93) | 304 SS | | Boric acid | 400 (204) | 316 SS | | Bromine, dry | 125 (52) | Monel | | Butane | 400 (204) | Steel | | Butyric acid | 212 (100) | Hastelloy C | | Calcium bisulphite | 75 (24) | Hastelloy C | | Calcium chloride | 212 (100) | Hastelloy C | | Calcium hydroxide 20% | 300 (149) | Hastelloy C | | Calcium hypochlorite | See bleaching pow | | | Carbolic acid | See phenol | dei | | Carbon dioxide, dry | 800 | Brass | | Carbonated water | 212 (100) | 304 SS | | Carbonated water Carbonated beverages | 212 (100) | | | | | 304 SS | | Carbon disulfide | 200 (93) | 304 SS | | Carbon tetrachloride | 125 (52) | Monel | | Chlorine, dry | 100 (38) | Monel | | Chlorine, moist | 100 (38) | Monel | | Chloracetic acid | 212 (100) | Monel | | Chloroform, dry | 212 (100) | Monel | | Chromic acid | 300 (149) | Hastelloy C | | Cider | 300 (149) | 304 SS | | Citric acid | 212 (100) | Hastelloy C | | Copper (10) chloride | 212 (100) | Hastelloy C | | Copper (10) nitrate | 300 (149) | 316 SS | | Copper (10) sulfate | 300 (149) | 316 SS | | Copper plating solution (cyanide) | 180 (82) | 304 SS | | Copper plating solution (acid) | 75 (24) | 304 SS | | Corn oil | 200 (93) | 304 SS | | Creosote | 200 (93) | 304 SS | | Crude oil | 300 (149) | Monel | | Ethyl acetate | See lacquer thinne | | | Ethyl chloride, dry | 500 (260) | Steel | | Ethylene glycol (uninhibited) | 212 (100) | 304 SS | | Ethylene oxide | 75 (24) | Steel | | Fatty acids | 500 (260) | 316 SS | | | | | | Ferric chloride | 75 (24)
300 (149) | Hastelloy C | | Ferric sulphate | 212 (100) | 304 SS | | Formaldehyde 40% | | 316 SS | | Formic acid | 300 (149) | 316 SS | | Freon | 300 (149) | Steel | | Fluorine, anhydrous | 100 (38) | 304 SS | | Furfural | 450 (232) | 316 SS | | Gasoline | 300 (149) | Steel | | Glucose | 300 (149) | 304 SS | | Glue, pH 6-8 | 300 (149) | 304 SS | | Glycerine | 212 (100) | Brass | | Hydrobromic acid | 212 (100) |
Hastelloy C | | Hydrochloric acid 37-38% | 225 (107) | Hastelloy B | | Hydrogen chloride, dry | 500 (260) | 304 SS | | Hydrocyanic acid | 212 (100) | 304 SS | | , | / | | | Hydrogen fluoride, dry | Medium | °F (°C) | Material | |--|------------------------|-----------|-------------| | Hydrofluoglilicic acid 40% 212 (100) Monel Hydrogen peroxide 10-100% 125 (52) 304 \$5 | Hydrofluoric acid 60% | 212 (100) | | | Hydrogen peroxide 10-100% 125 (52) 304 SS | | | | | Kerosene | | | | | Lacquers & thinners 300 (149) 316 SS Lactic acid 300 (149) 316 SS Linse 212 (100) 316 SS Linseed oil 75 (24) Steel Magnesium hydroxide (or oxide) 75 (24) 304 SS Magnesium sulphate 40% 212 (100) 304 SS Magnesium sulphate 40% 75 (24) 304 SS Magnesium sulphate 40% 75 (24) 304 SS Mercuric chloride 10% 75 (24) Hastelloy C Mercury 100% 700 (371) Steel Methylene chloride 212 (100) 304 SS Methylene chloride 212 (100) 304 SS Methylene chloride 212 (100) 304 SS Methylene chloride 75 (24) Steel Milk, fresh or sour 180 (82) 304 SS Molasses See glucose Natural gas 70 (21) 304 SS Nitric acid 75 (24) 304 SS Nitric acid 75 (24) 304 SS Nitric acid 300 (149) 316 SS Nitric acid 300 (149) 316 SS Oxalic acid 212 (100) Monel Photographic bleaching 100 (38) 304 SS Palmitic acid See fatty acids Phosphoric acid 212 (100) 316 SS Palmitic acid See fatty acids Phosphoric acid 212 (100) 316 SS Phosphoric acid 212 (100) 316 SS Phassium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soap & detergents 212 (100) 304 SS Sodium bicarbonate 20% 212 (100) 304 SS Sodium bicarbonate 20% 212 (100) 304 SS Sodium bicarbonate 20% 212 (100) 304 SS Sodium chloride 30% 300 (149) Monel Sodium chloride 30% 300 (149) Monel Sodium chloride 30% 300 (149) Monel Sodium sulfiate 40% 212 (100) 304 SS | | | | | Lactic acid 300 (149) 316 SS | | | | | Lime | | | | | Inseed oil | | | | | Magnesium Chloride 50% 212 (100) Nickel Magnesium Hydroxide (or oxide) 75 (24) 304 SS Magnesium Sulphate 40% 75 (24) Hastelloy C Mercury 100% 700 (371) Steel Methylene Chloride 109% 75 (24) Hastelloy C Methylene Chloride 212 (100) 304 SS Methylene Chloride 212 (100) 304 SS Methyl Chloride, dry 75 (24) Steel Milk, fresh or sour 180 (82) 304 SS Molasses See glucose Natural gas 70 (21) 304 SS Nitric acid 75 (24) 304 SS Nitric acid 75 (24) 304 SS Nitric acid 300 (149) 316 SS Nitric acid 300 (149) 316 SS Oxaygen 75 (24) Steel Oleic acid See fatty acids Oxalic acid 212 (100) Monel Photographic bleaching 100 (38) 304 SS Palmitic acid See fatty acids Phosphoric acid 212 (100) 316 SS Penol 212 (100) 316 SS Potassium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soap & detergents 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium chloride 30% 212 (100) 304 SS Sodium phypochlorite 10% 212 (100) 316 SS Sodium phypochlorite 10% 212 (100) 316 SS Sodium phypochlorite 10% 212 (100) 316 SS Sodium phypochlorite 10% 212 (100) 304 SS Sodium sulfide 30% 212 (100) 304 SS Sodium phypochlorite 10% 212 (100) 304 SS Sodium sulfide 30% 212 (100) 304 SS Sodium sulfide 30% 212 (100) 304 SS Sodium phypochlorite 10% 212 (100) 304 SS Sodium phypochlorite 10% 212 (100) 304 SS Sodium sulfide 30% 212 (100) 316 SS Sulfur cacid 90-100% 212 (100) 316 SS Sulfuric ac | | | | | Magnesium hydroxide (or oxide) 75 (24) 304 SS Magnesium sulphate 40% 212 (100) 304 SS Mercuric Chloride 10% 75 (24) Hastelloy C Mercury 100% 700 (371) Steel Methyler Chloride 212 (100) 304 SS Methyler Chloride, dry 75 (24) Steel Milk, fresh or sour 180 (82) 304 SS Molasses See glucose Natural gas 70 (21) 304 SS Nitric acid 300 (149) 316 SS SN Nitric acid 300 (149) 316 SS SN Oxigen 75 (24) Steel Oleic acid See fatty acids See fatty acids Oxalic acid See fatty acids Photographic bleaching 100 (38) 304 SS Plamitic acid See fatty acids Posasium compounds See fatty acids Phenol 212 (100) 316 SS Phenol 212 (100) 316 SS Potassium compounds See sodium compounds Propane 300 (1 | | | | | Magnesium sulphate 40% 212 (100) 304 SS | | | 304 SS | | Metrolylene chloride 700 (371) Steel Methyl chloride, dry 75 (24) Steel Milk, fresh or sour 180 (82) 304 SS Molasses See glucose Natural gas 70 (21) 304 SS Nitric acid 75 (24) 304 SS Nitric acid 300 (149) 316 SS Oxygen 75 (24) Steel Oleic acid See fatty acids Oleic acid See fatty acids Phosphoric acid 212 (100) Monel Phosphoric acid 212 (100) 316 SS Plamitic acid See fatty acids Phosphoric acid 212 (100) 316 SS Phenol 212 (100) 316 SS Potassium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soajum bisulphate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodi | Magnesium sulphate 40% | | 304 SS | | Methylene chloride 212 (100) 304 SS Methyl chloride, dry 75 (24) Steel Milk, fresh or sour 180 (82) 304 SS Molasses See glucose Natural gas 70 (21) 304 SS Nitric acid 75 (24) 304 SS Nitric acid 300 (149) 316 SS Oxygen 75 (24) Steel Obelic acid See fatty acids Oxalic acid 212 (100) Monel Photographic bleaching 100 (38) 304 SS Plamitic acid See fatty acids Phosphoric acid 212 (100) 316 SS Phenol 212 (100) 316 SS Phenol 212 (100) 316 SS Phenol 212 (100) 316 SS Posasium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soajum bisulphite 20% 212 (100) 304 SS Sodi | | | Hastelloy C | | Methyl chloride, dry 75 (24) Steel Milk, fresh or sour 180 (82) 304 SS Molasses See glucose Natural gas 70 (21) 304 SS Nitric acid 300 (149) 316 SS Oxygen 75 (24) Steel Oleic acid See fatty acids Ovalic acid 212 (100) Monel Photographic bleaching 100 (38) 304 SS Palmitic acid See fatty acids Phosphoric acid 212 (100) 316 SS Phenol 212 (100) 316 SS Potassium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soajum bicarbonate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium bicarbonate 20% 212 (100) | | | | | Mailk, fresh or sour | | | | | Molasses See glucose Natural gas 70 (21) 304 SS Nitric acid 75 (24) 304 SS Nitric acid 300 (149) 316 SS Oxygen 75 (24) 304 SS Oxygen 75 (24) 304 SS Oxalic acid See fatty acids Oxalic acid 212 (100) Monel Photographic bleaching 100 (38) 304 SS Palmitic acid See fatty acids Phosphoric acid 212 (100) 316 SS Phenol 212 (100) 316 SS Phenol 212 (100) 316 SS Potassium compounds See sodium compounds Propane 300 (149) Steel Rosa water 75 (24) Monel Soag & detergents 212 (100) 316 SS Sodium bicarbonate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium carbinate 40% 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium cyanide 212 (100) 316 SS Sodium hypochlorite 10% 524 Hastelloy C Sodium hypochlorite 10% 75 (24) Hastelloy C Sodium sulfate 30% 212 (100) 316 SS Sodium nitrate 40% 212 (100) 316 SS Sodium nitrate 40% 212 (100) 316 SS Sodium nitrate 40% 212 (100) 316 SS Sodium nyposhohorite 10% 75 (24) Hastelloy C Sodium sulfate 30% 212 (100) 316 SS | | | | | Natural gas | | | 304 55 | | Nitric acid 75 (24) 304 SS Nitric acid 300 (149) 316 SS Oxygen 75 (24) Steel Oleic acid See fatty acids Oxalic acid 212 (100) Monel Photographic bleaching 100 (38) 304 SS Palmitic acid See fatty acids Phosphoric acid 212 (100) 316 SS Phenol 212 (100) 316 SS Phenol 300 (149) Steel Rosin 100% 700 (371) 316 SS Potassium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soajum chicarbonate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) <td></td> <td></td> <td>204 66</td> | | | 204 66 | | Nitric acid 300 (149) 316 SS | | | | | Oxygen 75 (24) Steel Oleic acid See fatty acids Oxalic acid 212 (100) Monel Photographic bleaching 100 (38) 304 SS Palmitic acid See fatty
acids Phosphoric acid 212 (100) 316 SS Phenol 212 (100) 316 SS Potassium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soap & detergents 212 (100) 304 SS Sodium bicarbonate 20% 212 (100) 304 SS Sodium bisulphite 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium chroride 30% 300 (149) Monel Sodium chroride 30% 300 (149) Monel Sodium chroride 30% 300 (149) Monel Sodium chroride 30% 212 (100) 316 SS Sodium mypochlorit | | | | | Oleic acid See fatty acids Oxalic acid 212 (100) Monel Photographic bleaching 100 (38) 304 SS Palmitic acid See fatty acids Phespol 212 (100) 316 SS Phenol 212 (100) 316 SS Phenol 212 (100) 316 SS Phenol 300 (149) Steel Rosin 100% 700 (371) 316 SS Fosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soajum bisulphite 20% 212 (100) 304 SS Sodium bisulphate 40% 212 (100) 316 SS Sodium bisulphate 20% 212 (100) 316 SS Sodium | | | | | Oxalic acid 212 (100) Monel Photographic bleaching 100 (38) 304 SS Palmitic acid See fatty acids Phosphoric acid 212 (100) 316 SS Phenol 212 (100) 316 SS Potassium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soap & detergents 212 (100) 304 SS Sodium bisarbonate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium carbinate 40% 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium chromate 212 (100) 316 SS Sodium chromate 212 (100) 316 SS Sodium phydroxide 30% 212 (100) 316 SS Sodium phydroxide 30% 212 (100) 304 SS <td></td> <td></td> <td></td> | | | | | Photographic bleaching 100 (38) 304 SS Palmitic acid See fatty acids Phosphoric acid 212 (100) 316 SS Phenol 212 (100) 316 SS Potassium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soap & detergents 212 (100) 304 SS Sodium bisalphate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium carbinate 40% 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium chromate 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium cyanide 212 (100) 316 SS Sodium hydroxide 30% 212 (100) 316 SS Sodium hydroxide 30% 212 (100) 304 SS Sodium phypochlorite 10% 75 (24) Hastelloy C Sodium nitrate 40% 212 (100) 304 SS Sodium nitrate 40% 212 (100) 304 SS Sodium phyposhate 10% 212 (100) 304 SS Sodium phyposhate 10% 212 (100) 304 SS Sodium physphate 10% 212 (100) 304 SS Sodium sulfide 30% 212 (100) 316 304 SS Sodium sulfide 30% 212 (100) 316 SS Sulfur chloride, dry 500 (260) 316 SS Sulfur chloride, dry 500 (260) 316 SS Sulfur cacid 10-90% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) 316 SS Sulfuric acid 90-100% | | | Monel | | Palmitic acid | | | | | Phenol 212 (100) 316 SS Potassium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Sodium bicarbonate 20% 212 (100) 304 SS Sodium bisulphite 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium carbinate 40% 212 (100) 316 SS Sodium carbinate 40% 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium chromate 212 (100) 316 SS Salt or brine See sodium chloride Sodium yanide 212 (100) 304 SS Sodium pyarockide 30% 212 (100) 304 SS Sodium pyarockide 30% 212 (100) 316 SS Sodium pyarockide 30% 212 (100) 304 SS Sodium pyarockide 30% 212 (100) 304 SS Sodium pyarockide 30% 212 (100) 304 SS Sodium pitrate 40% 212 (100) | | | | | Protassium compounds See sodium compounds Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soap & detergents 212 (100) 304 SS Sodium bisulphite 20% 212 (100) 304 SS Sodium bisulphite 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium carbinate 40% 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium chloride 30% 300 (149) Monel Sodium chromate 212 (100) 316 SS Salt or brine See sodium chloride Sodium payorxide 30% 212 (100) 304 SS Sodium phyochlorite 10% 75 (24) Hastelloy C Sodium phyochlorite 10% 75 (24) 316 SS Sodium nitrate 40% 212 (100) 304 SS Sodium phyosphate 10% 212 (100) Steel Sodium phyosphate 10% 212 (100) Steel Sodium sulfite 30% 212 (100) </td <td>Phosphoric acid</td> <td>212 (100)</td> <td></td> | Phosphoric acid | 212 (100) | | | Propane 300 (149) Steel Rosin 100% 700 (371) 316 SS Sea water 75 (24) Monel Soap & detergents 212 (100) 304 SS Sodium bisulphite 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium carbinate 40% 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium chromate 212 (100) 304 SS Sodium posphate 10% 212 (100) 316 SS Sodium hypochlorite 10% 75 (24) Hastelloy C Sodium posphate 10% 212 (100) 304 SS Sodium nitrate 40% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfide 30% 2 | | | | | Rosin 100% 700 (371) 316 SS | | | | | Sea water 75 (24) Monel Soap & detergents 212 (100) 304 SS Sodium bicarbonate 20% 212 (100) 304 SS Sodium bisulphite 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium carbinate 40% 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium chromate 212 (100) 316 SS Salt or brine See sodium chloride Sodium cyanide 212 (100) 304 SS Sodium pyochlorite 10% 75 (24) Hastelloy C Sodium pyochlorite 10% 75 (24) Hastelloy C Sodium nitrite 20% 75 (24) 316 SS Sodium phosphate 10% 212 (100) 304 SS Sodium phosphate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) Steel Sodium sulfate 30% 212 (100) 316 SS Sodium sulfate 30% 212 (100) 316 SS Sodium sulfate 30% 212 (100) 316 SS Sodium sulfate 30% <td></td> <td></td> <td></td> | | | | | Soap & detergents 212 (100) 304 SS Sodium bisulphite 20% 212 (100) 316 SS Sodium bisulphite 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium carbinate 40% 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium chromate 212 (100) 316 SS Salt or brine See sodium chloride Sodium cyanide 212 (100) 304 SS Sodium hydroxide 30% 212 (100) 316 SS Sodium hydroxide 30% 212 (100) 304 SS Sodium hydroxide 30% 212 (100) 304 SS Sodium hydroxide 30% 212 (100) 304 SS Sodium plasphate 10% 212 (100) 34 SS Sodium plasphate 10% 212 (100) 5teel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfide 30% 212 (100) 316 SS Sodium sulfide 30% 212 (100) 316 SS Sodium sulfide 30% 212 (100) 304 SS Sodium sulfide | | | | | Sodium bicarbonate 20% 212 (100) 316 SS Sodium bisulphite 20% 212 (100) 304 SS Sodium bisulphate 20% 212 (100) 304 SS Sodium carbinate 40% 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium chromate 212 (100) 316 SS Salt or brine See sodium chloride Sodium cyanide 212 (100) 304 SS Sodium hydroxide 30% 212 (100) 316 SS Sodium hydroxide 30% 212 (100) 304 SS Sodium hydroxide 30% 212 (100) 304 SS Sodium plase 10% 212 (100) 304 SS Sodium nitrite 20% 75 (24) 316 SS Sodium plosphate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfate 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium thiosulfate 212 (100) 304 SS Steam <t< td=""><td></td><td></td><td></td></t<> | | | | | Sodium bisulphate 20% 212 (100) 304 SS | | | | | Sodium bisulphate 20% 212 (100) 304 SS | | | | | Sodium carbinate 40% 212 (100) 316 SS Sodium chloride 30% 300 (149) Monel Sodium chloride 212 (100) 316 SS Salt or brine See sodium chloride Sodium cyanide 212 (100) 304 SS Sodium hydroxide 30% 212 (100) 316 SS Sodium hydroxide 30% 212 (100) 304 SS Sodium phosphate 10% 212 (100) 304 SS Sodium nitrite 20% 75 (24) 316 SS Sodium phosphate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfite 10% 212 (100) 316 SS Sodium sulfate 30% 212 (100) 304 SS Steam 304 SS | | | | | Sodium chloride 30% 300 (149) Monel Sodium chromate 212 (100) 316 SS Salt or brine See sodium chloride Sodium cyanide 212 (100) 304 SS Sodium hydroxide 30% 212 (100) 316 SS Sodium hypochlorite 10% 75 (24) Hastelloy C Sodium nitrate 40% 212 (100) 304 SS Sodium phosphate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfide 30% 212 (100) 316 SS Sodium sulfite 10% 212 (100) 304 SS Sodium sulfite 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Steam 304 SS Steaticacid Stearic acid See fatty acids Sugar solution See glucose Sulfur chloride, dry 75 (24) 316 SS Sulfur floxide, dry 75 (24) 316 SS | | | | | Sodium chromate 212 (100) 316 SS Salt or brine See sodium chloride Sodium cyanide 212 (100) 304 SS Sodium hydroxide 30% 212 (100) 316 SS Sodium hydroxide 10% 75 (24) Hastelloy C Sodium phosphate 10% 212 (100) 304 SS Sodium nitrate 20% 75 (24) 316 SS Sodium phosphate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfide 30% 212 (100) 316 SS Sodium sulfide 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Steam 304 SS Sodium thiosulfate 212 (100) 304 SS Stearic acid See fatty acids See fatty acids See fatty acids Sugar solution See glucose Sulfur chloride, dry 75 (24) 316 SS Sulfur c dioxide, dry 500 (260) 304 SS <td< td=""><td></td><td></td><td></td></td<> | | | | | Sodium cyanide 212 (100) 304 SS Sodium hydroxide 30% 212 (100) 316 SS Sodium hypochlorite 10% 75 (24) Hastelloy C Sodium nitrate 40% 212 (100) 304 SS Sodium nitrite 20% 75 (24) 316 SS Sodium plosphate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfide 30% 212 (100) 316 SS Sodium sulfate 30% 212 (100) 304 SS Steam 304 SS SS Steam 304 SS SS Steam 500 (260) 304 SS Stearic acid See fatty acids Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS | Sodium chromate | | 316 SS | | Sodium hydroxide 30% 212 (100) 316 SS Sodium hypochlorite 10% 75 (24) Hastelloy C Sodium nitrite 20% 75 (24) 316 SS Sodium nitrite 20% 75 (24) 316 SS Sodium phosphate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfite 10% 212 (100)
316 SS Sodium sulfite 10% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Steam 304 SS S Stearic acid See fatty acids Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur floxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) 316 SS </td <td>Salt or brine</td> <td></td> <td></td> | Salt or brine | | | | Sodium hypochlorite 10% 75 (24) Hastelloy C Sodium nitrate 40% 212 (100) 304 SS Sodium nitrite 20% 75 (24) 316 SS Sodium phosphate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfite 10% 212 (100) 316 SS Sodium sulfite 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium thiosulfate 212 (100) 304 SS Steam 304 SS SS Stearic acid See fatty acids Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur id ioxide, dry 500 (260) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) 316 SS | | | | | Sodium nitrate 40% 212 (100) 304 SS Sodium nitrite 20% 75 (24) 316 SS Sodium phosphate 10% 212 (100) Steel Sodium silicate 10% 212 (100) 316 SS Sodium sulfite 30% 212 (100) 316 SS Sodium sulfite 10% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium thiosulfate 212 (100) 304 SS Steam 304 SS SS Steam 500 (260) 304 SS Stearic acid See fatty acids Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 90-100% 212 (100) 316 SS | | | | | Sodium nitrite 20% 75 (24) 316 SS Sodium phosphate 10% 212 (100) Steel Sodium silicate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfite 10% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium thiosulfate 212 (100) 304 SS Steam 304 SS SS Stearic acid See fatty acids Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) 316 SS Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid 20% 75 (24) 316 SS Sulfuric acid 40% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS < | | | | | Sodium phosphate 10% 212 (100) Steel Sodium silicate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfite 10% 212 (100) 304 SS Sodium sulfate 30% 212 (100) 304 SS Sodium thiosulfate 212 (100) 304 SS Steam 304 SS Stearic acid Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur floxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid, fuming 175 (79) Hastelloy C Sulfuric acid, fuming 175 (79) Hastelloy C Sulfuric acid 40% 75 (24) 316 SS Titanium tetrachloride 75 (24) Hastelloy B Toluene 75 (2 | | | | | Sodium silicate 10% 212 (100) Steel Sodium sulfide 30% 212 (100) 316 SS Sodium sulfite 10% 212 (100) 316 SS Sodium sulfate 30% 212 (100) 304 SS Sodium thiosulfate 212 (100) 304 SS Steam 304 SS SS Stearic acid See fatty acids Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur solutide, dry 75 (24) 316 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfuric acid, fuming 175 (79) Hastelloy C Sulfuric acid 30% 75 (24) 316 SS< | | | | | Sodium sulfide 30% 212 (100) 316 SS Sodium sulfite 10% 212 (100) 316 SS Sodium sulfate 30% 212 (100) 304 SS Sodium thiosulfate 212 (100) 304 SS Steam 304 SS 304 SS Steam 304 SS SS Stearic acid See fatty acids Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid 2090 75 (24) 316 SS Sulfuric acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Titanium tetrachloride 75 (24) Hastelloy B Toluene 75 (24) Steel Trichlo | | | | | Sodium sulfite 10% 212 (100) 316 SS Sodium sulfate 30% 212 (100) 304 SS Sodium thiosulfate 212 (100) 304 SS Steam 304 SS Steam 304 SS Steam 304 SS Stearic acid See fatty acids Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur doxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) 316 SS Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (24) 316 SS Sulfuric acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B | | | | | Sodium sulfate 30% 212 (100) 304 SS Sodium thiosulfate 212 (100) 304 SS Steam 304 SS Stearic acid See fatty acids Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurious acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Titanium tetrachloride 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS | | | | | Sodium thiosulfate 212 (100) 304 SS Steam 304 SS Stearic acid See fatty acids Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid, fuming 175 (79) Hastelloy C Sulfuric acid, fuming 175 (79) Hastelloy C Sulfuric acid, fuming 175 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Titanium tetrachloride 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichlorocethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel | | | | | Stearic acid See fatty acids Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | Sodium thiosulfate | | | | Sugar solution See glucose Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Toluene 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | 304 SS | | Sulfur 500 (260) 304 SS Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Sulfur chloride, dry 75 (24) 316 SS Sulfur dioxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) 316 SS Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloracethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | 204.55 | | Sulfur dioxide, dry 500 (260) 316 SS Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichlorocethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Sulfur trioxide, dry 500 (260) 316 SS Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic
acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Sulfuric acid 10% 212 (100) 316 SS Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Sulfuric acid 10-90% 212 (100) Hastelloy B Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Sulfuric acid 90-100% 212 (100) 316 SS Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichlorocethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Sulfuric acid, fuming 175 (79) Hastelloy C Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Sulfurous acid 20% 75 (24) 316 SS Titanium tetrachloride 75 (24) 316 SS Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Tannic acid 40% 75 (24) Hastelloy B Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Toluene 75 (24) Steel Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Trichloracetic acid 75 (24) Hastelloy B Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Trichloroethylene, dry 300 (149) Monel Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Turpentine 75 (24) 316 SS Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Varnish 150 (66) Steel Zinc chloride 212 (100) Hastelloy B | | | | | Zinc chloride 212 (100) Hastelloy B | | | | | | | | | | Zinc sulfate 212 (100) 316 SS | | | | # ► SECTION 11: REFERENCE | Industry specifications | 1 | 1- | -2 |) | |-------------------------|---|----|----|---| | Global Resources | 1 | 1- | -3 | 3 | ## **Industry Specifications for Sensors** ## ISO 9001: 2000 / AS/EN/SJAC9100 (Registrar: TÜV) Minco's Quality Assurance system has been audited and certified to this internationally recognized standard. #### **ATEX DIRECTIVE 94/9/EC** Issued by: European Commission Minco has qualified specific models of sensors and accessories used in potentially hazardous areas to these international requirements. * Temperature range of individual models may vary. #### **CENELEC** Issued by: European Committee for Electrotechnical Standardization Minco has qualified specific models of sensors and accessories used in potentially hazardous areas to these international requirements. #### **CSA** Issued by: Canadian Standards Assn. CSA Standards are met through recognized testing labs, such as Underwriters Labs, whose testing covers both the U.S. and Canada (see UL). #### **DIN 43760** Issued by: Deutsches Institut für Normung (Germany) Specifies resistance curves and tolerance for nickel RTDs. Platinum curves are now covered under IEC EN60751. ### FM Issued by: Factory Mutual Selected temperature sensors and Temptran™ transmitter models are certified compliant to FM specifications and requirements for use in hazardous areas, for the purposes of safety and property loss prevention. ## IEC EN60751 (IEC 751) Issued by: International Electrotechnical Commission IEC 751 has the widest international scope of any RTD standard. It calls for platinum RTDs, 100 Ω at 0°C, TCR 0.00385 Ω/Ω /°C, in one of two tolerance classes: Class A: $\pm 0.06\%$ at 0°C. Class B: $\pm 0.12\%$ at 0°C. All Minco RTDs with PD element code meet Class B. Selected models have Class A as an option. #### JIS C 1604-1989 Issued by: Japanese Standards Assn. Specifies 100 Ω 0.00385 platinum thermometers in accordance with EN60751, but also makes provision for 0.003916 TCR. Minco can supply RTDs to either curve. #### MIL-T-24388C(SH) Issued by: U.S. Naval Sea Systems Command RTDs and thermocouples for shipboard use. Included are platinum RTDs with 0.00392 TCR and nickel models with 0.00672 TCR. See Section 7 for bearing embedment RTDs qualified to this specification. Minco does not currently offer probe or thermowell models to MIL-T-24388. #### NBS (NIST) Monograph 175, based on ITS-90 Issued by: National Institute of Standards and Technology Sets general standards for thermocouples, including millivolt tables, limits of error, and wire color codes. All Minco thermocouples confirm to this specification. #### SAMA RC21-4-1966 Issued by: Scientific Apparatus Makers Association Specifies various curves for platinum, nickel, and copper RTDs. The platinum curve, available from Minco, has a resistance of 98.129 Ω at 0°C and TCR of 0.003923. Placing a fixed resistor of 1.871 Ω in series with this element makes it fit the EN60751 curve. ### UL Issued by: Underwriters Laboratories Selected Minco temperature controllers and temperature transmitters are UL-Listed, and/or UL Recognized Components (see product listings for details). ## **Additional Quality system standards** Minco also has the capability of meeting MIL-Q-9858, MIL-I-45208, FDA-GMP, and 10CFR50 and -21. ## Global Resources Minco has an established infrastructure around the world to support the growing needs of our global customer base. Each Minco regional center provides sales, customer service, engineering and technical expertise to help you specify and manufacture a reliable temperature sensing solution. Our key regional centers include: ## **Minco Global Headquarters** 7300 Commerce Lane Northeast Minneapolis, MN 55432 Tel 763.571.3121 | Fax 763.571.0927 Email custsery@minco.com ### Minco Europe Zone Industrielle 09310 Aston, France Tel (33) 5 61 03 24 01 | Fax (33) 5 61 03 24 09 Email custserv.europe@minco.com #### Minco Asia Pacific 1 Maritime Square, #12N05B HarbourFront Centre, Singapore 099253 Tel (65) 6635 6738 | Fax (65) 6635 6724 Email custserv.ap@minco.com ## **Minco China** Room 3F08 3/F, HIC, Hopeson ONE, Jia No. 21, West Da Wang Road, Chaoyang District Beijing, P.R. China, 100022 Tel (86) 178 0159 3792 | Fax (86) 178 0159 3792 Email custserv.china@minco.com ### Minco Japan #817 Ebisu Green Glass, 3-1-1 Ebisuminami, Shibuya-ku Tokyo, 150-0022, JAPAN Tel (81) 3-4540-1074 Email custserv.japan@minco.com For more information visit: www.minco.com.